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Topology, Quasiperiodic Functions,
and the Transport Phenomena

A.Ya. Maltsev and S.P. Novikov

Summary. In this chapter we give the basic concept of the “topological numbers”
in the theory of quasiperiodic functions. Attention is especially paid to appearance
of such quantities in transport phenomena, including galvanomagnetic phenomena
in normal metals (Sect. 2.1) and the modulations of 2D electron gas (Sect. 2.3). We
give a detailed introduction to both these areas and explain in a simple way the
appearance of the “integral characteristics” in both these problems. Though this
chapter cannot be considered a detailed survey in the area, it explains the main
basic features of the corresponding phenomena.

2.1 Introduction

2.1.1 Galvanomagnetic Phenomena in Normal Metals: Classical
Results, GSMF Limit

We first consider the transport phenomena connected with the geometry of
quasiclassical electron trajectories in the magnetic field B.

Let us start with the most fundamental case where this kind of phenom-
ena appears in the conductivity of normal metals having complicated Fermi
surfaces in the presence of a rather strong magnetic field. This classical part of
the solid state physics was started by the Kharkov school of I.M. Lifshitz (Lif-
shitz, Azbel, Kaganov, Peschansky) in the 1950s and has become an essential
part of conductivity theory in normal metals. In particular, they introduced
the idea of the geometric strong magnetic field (GSMF) limit. Let us give here
some small insight into this area. We start with the classical work of I.M. Lif-
shitz, M.Ya. Azbel and M.I. Kaganov [1], where the importance of topology
of the Fermi surface for the conductivity was established. Namely, the dif-
ference between the “simple” Fermi surface (topological “sphere”) (Fig. 2.1a)
and more complicated surfaces where the nonclosed quasiclassical electron
trajectories can arise was shown. In particular, detailed consideration of the
“simple” Fermi surface and surfaces like “warped cylinder” (Fig. 2.1b) for the
different directions of B was made.
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Fig. 2.1. The “simple” Fermi surface having the form of a sphere in the Brillouin
zone and the periodic “warped cylinder” extending through an infinite number of
Brillouin zones. The quasiclassical electron orbits in p-space are also shown for a
given direction of B

Figure 2.1 represents the forms of the Fermi surfaces in p-space and it
should be remembered that only one Brillouin zone should be taken into
account to get the right phase space volume for the electron states. The values
of p which are different from any reciprocal lattice vector n1a1 +n2a2 +n3a3

(where ni are integers), are physically equivalent to each other and represent
the same electron state. The Brillouin zone can then be considered as the
parallelogram in the p-space with the identified opposite sides on the boundary
(Fig. 2.2).

Also the Fermi surfaces SF will then be periodic in p-space with periods
a1, a2, a3.

Remark. From a topological point of view, we consider the Brillouin zone
as the compact three-dimensional torus T3. The corresponding Fermi surfaces
will then also be compact surfaces of finite size embedded in T3.

Identified sides

Identified sides

Identified sides

Fig. 2.2. The Brillouin zone in the quasimomentum (p) space with the identified
sides on the boundary
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The presence of the homogeneous magnetic field B generates the evolution
of electron states in the p-space, which can be described by the dynamical
system

ṗ =
e

c
[vgr(p) × B] =

e

c
[∇ε(p) × B] , (2.1)

where ε(p) is the dependence of energy on the quasimomentum (dispersion re-
lation) and vgr(p) = ∇ε(p) is the group velocity at the state p. Both functions
ε(p) and vgr(p) are also periodic functions in p-space and can be considered
as one-valued functions in T3.

System (2.1) has two conservative integrals that are the electron energy
and the component of p along the magnetic field. The electron trajectories
can then be represented as the intersections of the constant energy surfaces
ε(p) = const. with the planes orthogonal to B and only the Fermi level
ε(p) = εF is actually important for the conductivity. It easy to see then that
global geometry of the “essential” electron trajectories will depend strongly
on the form of Fermi surface in p-space.

Coming back to the Fig. 2.1 we can see that the form of electron trajectories
can be quite different for the Fermi surfaces similar to the Fermi surface
shown in Fig. 2.1b, we can have periodic nonclosed electron trajectories (if
B is orthogonal to vertical axis), while for the surface on Fig. 2.1a all the
trajectories are just closed curves lying in one Brillouin zone for all directions
of B.

We now share that this global geometry plays the main role in the electron
motion in the coordinate space also (despite the factorization in p-space).
Thus the electron wave-packet motion in x-space (x = (x, y, z)) can be found
from the additional system

ẋ = vgr(p(t)) = ∇ε(p(t))

for any trajectory in p-space after the integration of system (2.1). The struc-
ture of system (2.1) permits to claim for example that the xy-projection of
“electron motion” in x-space has the same form as the trajectory in p-space
rotated by π/2. We can see then that the electron drift in x-space in magnetic
field is also very different for the trajectories shown in Fig. 2.3a, b due to the
action of the crystal lattice.

The effect of this “geometrical drift” can be measured experimentally in
the rather pure metallic monocrystals if the mean free electron motion time
is big enough (such that the electron packet “feels” the geometric features of
trajectory between the two scattering acts). The geometric picture requires
then that the time between the two scatterings is much longer than the “pass-
ing time” through one Brillouin zone for the periodic trajectory and much
longer than the “inverse cyclotron frequency” for closed trajectories.1 For the

1 This criterion can be actually more complicated for trajectories of more compli-
cated form.
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Fig. 2.3. Electron trajectories in p-space given by the intersections of planes orthog-
onal to B for the Fermi surfaces shown in Fig. 2.1a, b for B orthogonal to vertical
axis

approximation of effective mass m∗ in crystal this condition can be roughly
expressed as ωBτ � 1, where ωB = eB/m∗c is the formal cyclotron frequency
and τ is the mean free electron motion time. Let us note that this require-
ment is satisfied better for big values of B and we consider the formal limit
B → ∞ in this chapter. We call this situation GSMF limit and consider the
asymptotic of conductivity tensor for this case.2

We give here the asymptotic form of conductivity tensor obtained in [1]
for the case of trajectories shown in Fig. 2.3a, b. Let us take the z-axis in the
x-space along the magnetic field B. The axes x and y can be chosen arbitrarily
for the case of Fig. 2.3a and we take the y-axis along the mean electron drift
direction in x-space for the case of Fig. 2.3b. (It is obvious that the x-axis will
then be directed along the mean electron drift in p-space in this situation).
The asymptotic forms of the conductivity tensor can then be written as:

Case 1 (closed trajectories, Fig. 2.3a):

σik � ne2τ

m∗

⎛⎝ (ωBτ)−2 (ωBτ)−1 (ωBτ)−1

(ωBτ)−1 (ωBτ)−2 (ωBτ)−1

(ωBτ)−1 (ωBτ)−1 ∗

⎞⎠ , ωBτ � 1 (2.2)

2 Formally another condition �ωB � εF should also be imposed on the magnetic
field B. However, this condition is always satisfied for the real metals and all
experimentally available magnetic fields (the upper limit is B ∼ 103−104 T). So
we do not pay special attention to this second restriction and assume that the limit
B → ∞ is considered in the “experimental sense,” where the second condition is
satisfied.
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Fig. 2.4. The picture from [2] representing the “thin spatial net” and the corre-
sponding directions of B on the unit sphere where the nonclosed electron trajectories
exist

Case 2 (open periodic trajectories, Fig. 2.3b):

σik � ne2τ

m∗

⎛⎝ (ωBτ)−2 (ωBτ)−1 (ωBτ)−1

(ωBτ)−1 ∗ ∗
(ωBτ)−1 ∗ ∗

⎞⎠ , ωBτ � 1, (2.3)

where ∗ indicates some dimensionless constants of the order of 1.

We can see that conductivity reveals the strong anisotropy in the plane
orthogonal to B in the second case, and the mean direction of the electron
trajectory in p-space (not in x) can be measured experimentally as the zero
eigen-direction of σik for B → ∞.

More general types of open electron trajectories are considered in [2, 3].
For example, the open trajectories that are not periodic are found in [2] for
the “thin spatial net” (Fig. 2.4a). The open trajectories exist here only for
the directions of B close to main crystallographic axes (1, 0, 0), (0, 1, 0), and
(0, 0, 1) (Fig. 2.4b). It was shown in [2] that the open trajectories lie in this
case in the straight strips of finite width in the plane orthogonal to B and pass
through them. The mean direction of open trajectories is given here by the
intersections of plane orthogonal to B with the main crystallographic planes
(xy), (yz), and (xz).

The form of conductivity tensor for this kind of trajectories used in [2]
coincides with (2.3).

Some analytical dispersion relations are also considered in [3].3 Let us men-
tion here also the works [4–11] where different experimental (and theoretical)
investigations for some real metals were made. Detailed consideration of these
results can also be found in the survey articles [12,13] and the book [14] (see
also [15]).

3 Actually this work contains some conceptual mistakes but it also gives some
correct features concerning the existence of some open trajectories for these dis-
persion relations.
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2.1.2 Modern Ideas: The GSMF Limit, Topology,
and Dynamical Systems

From the physical point of view the problem arising here can be divided into
two parts:

(1) The investigation of topology and dynamics of electron trajectories on
the Fermi surface. Based on works [16–20] we call this Novikov problem.

(2) The problem of the relation of this dynamics with the physical prop-
erties of electric conductivity in the strong magnetic fields (GSMF limit)
formulated essentially in the works of Lifshitz group [1–3,12–14]).

The result of the Lifshitz group is based on the investigation of kinetic
equation for the corresponding quasiparticles given in work [1] for the concrete
examples. We had to generalize these results, which led us to the formulation
of the GSMF limit in the following form: all essential properties of electrical
conductivity (under certain restrictions) are determined by the geometry of
the dynamical system on the Fermi surface for the limit of large values of B.

It is worth noting that this part of investigation, including the GSMF-
limit principle, was never mathematically rigorously investigated unlike the
first part (the Novikov problem) where the investigation was made by the
rigorous methods of differential topology. It appeared then that in the case of
general position the electron trajectories have the integer topological invari-
ants stable with respect to the small rotations of the magnetic field. These
“topological quantum numbers” coincide for different trajectories (i.e., pos-
sess the “topological resonance” property). Due to this fact the “Topological
quantum numbers” become macroscopic observable quantities. We state that
there also exist very interesting cases of the so-called “chaotic trajectories”.
This type of trajectories is not yet completely investigated and it seems that
new physical phenomena arise there.

Let us now describe in more detail the topological approach to the prob-
lem of general classification of all possible electron trajectories regardless the
concrete features of the dispersion relation ε(p) given by Novikov [16] (see
also [21–23]). We formulate the Novikov problem here.

Novikov Problem

Let any smooth 3-periodic function ε(p) be given in the three-dimensional
space R3 (with arbitrary lattice of periods). Fix any nondegenerate energy
level ε(p) = const (i.e., ∇ε(p) 
= 0 on this level) and consider the intersections
of the corresponding smooth 3-periodic surface by any set of parallel planes in
R3. Describe the global geometry of all possible nonsingular (open) trajectories
that can arise in the intersections.

The term “the global geometry” means here first the asymptotic behavior
of the trajectory when t → ±∞ in the sense of dynamical systems. Let us
also formulate here the Novikov conjecture about the generic nonsingular
trajectories, which was proved later by his pupils.
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Novikov Conjecture

The generic nonsingular open trajectories lie in the straight strips of finite
width (in the plane orthogonal to B) and pass through them.

In the process of proving of Novikov conjecture, the deeper properties of
the generic open trajectories were actually revealed. They appeared to be
stable with respect to the (small) rotations of the direction of B. Moreover,
it appeared that all the generic open orbits lie on some “warped planes”
the quasimomenta space. All these “warped planes” have the integral mean
direction (i.e., generated by two reciprocal lattice vectors) and are parallel
on average to each other for a given direction of B. These integral mean
directions of “warped planes” appear to be rigid for small rotations of the
direction of B and represent the “Topological quantum numbers” mentioned
earlier.

Let us also emphasize that Novikov conjecture is connected with the
generic open trajectories and cannot be valid in the special degenerate cases
(Tsarev, Dynnikov) as we will see later.

There is also the natural question of what the generic case means in this
situation. According to the Novikov conjecture the Hausdorff dimension of
the set of directions of B on the unit sphere where the “nongeneric” open
trajectories arise is strictly less than 1 for the generic Fermi surfaces (for
some nongeneric Fermi surfaces this dimension can be greater than 1 as for
example in the case of the surface cos x + cos y + cos z = 0 (see [24,25])).

Let us now give some historical review on the consideration of the Novikov
problem in the topological school (Zorich, Dynnikov, Tsarev), where the basic
theorems about the nonclosed trajectories were obtained. We provide here
the main breakthroughs in this problem made in [17] (A.V. Zorich) and [20]
(Dynnikov).

We first note that even for the rather complicated periodic Fermi sur-
face, the electron trajectories will be quite simple if the direction of B is
purely rational (with respect to reciprocal lattice), i.e., if the plane Π(B)
orthogonal to B contains two linearly independent reciprocal lattice vectors.
This property can also be formulated in the form where the magnetic fluxes
through the faces of elementary cell in the x-space are proportional to each
other with rational coefficients. In this situation the picture arising in Π(B)
is purely periodic and all open electron trajectories can also be just the
periodic curves corresponding precisely to the case (2.3). However, the condi-
tion of rationality is completely unstable with respect to any small rotations
of B such that the rational directions give just a set of measure 0 among all
the directions of B.

The remarkable fact proved by Zorich is that the open trajectories reveal
the “topologically regular” properties even after the small rotations of the ini-
tial purely rational direction. That is, they lie in straight strips of finite width
in accordance with the Novikov conjecture (but are not periodic anymore).
Let us formulate this in a more precise form.
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Fig. 2.5. The open region Ω around the purely rational direction B0/B0 on the
unit sphere and the general open trajectory lying in the straight strip of finite width
in the plane orthogonal to B for B/B ∈ Ω

Theorem 1 (Zorich [17]). Consider an arbitrary smooth Fermi surface and
the rational direction of magnetic field B0 such that no singular trajectory
connects two different (not equivalent modulo the reciprocal lattice) singular
(stagnation) points of the system (2.1). Then there exists a small open region
Ω on the unit sphere around direction B0 such that all open trajectories (if
they exist) lie in straight strips of finite width in the plane orthogonal to B if
B/B ∈ Ω (Fig. 2.5).

It was also proved by Dynnikov that any trajectory of this kind passes
through the corresponding strip and does not come back ([18,19]).

Let us also mention that the additional topological condition in Theo-
rem 1 has a generic form and generically does not impose anything on the
direction B0.

In his theorem, of Zorich actually claims that all the rational directions of
B can be extended to some “small open spots” on the unit sphere (parame-
terizing directions of B) where we cannot have a situation more complicated
than that represented in Fig. 2.5. This set already has the finite measure on
the unit sphere and moreover we can conclude that any stable open trajec-
tory can have only the form shown in Fig. 2.5 since the rational directions
are dense everywhere on the unit sphere. The Zorich theorem, however, does
not permit to state that this situation is the only possible one since the sizes
of the “spots” become smaller and smaller for big rational numbers and we
cannot claim that they cover all the unit spheres in a general situation.

The next important result was obtained by Dynnikov [20] who proved that
the trajectories shown in Fig. 2.5 can be the only stable ones with respect to
the small variation of the Fermi energy εF for a given dispersion relation ε(p).
We provide the exact form of the Dynnikov theorem in Sect. 2.2 where we
will consider this aspect in more detail. We just state here that the methods
developed in [20] permitted to prove later that all the cases of open trajectories
different from those shown in Fig. 2.5 can appear only “with probability zero”
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(i.e., for the directions of B from the set of measure zero on the unit sphere)
for generic Fermi surfaces SF : ε(p) = εF ( [24,26]), which gave the final proof
of Novikov conjecture for generic open trajectories.

The methods of proving Zorich and Dynnikov theorems gave the basis
for the invention of the “topological quantum numbers” introduced in [28]
by the present authors (see also the survey articles [29–31]) for conductivity
in normal metals. Let us also state that another important property, called
the “Topological Resonance,” played a crucial role for physical phenomena
in [28]. The main point of this property can be formulated as follows: all the
trajectories having the form shown in Fig. 2.5 have the same mean direction
in all the planes orthogonal to B for the generic directions of B (actually
for any not purely rational direction of B) and give the same form (2.3)
of contribution to conductivity tensor in the same coordinate system. This
important fact makes experimentally observable the integer-valued topological
characteristics of the Fermi surface having the form of the integral planes of
reciprocal lattice and corresponding “stability zones” on the unit sphere. We
describe in detail these quantities in Sect. 2.2 of our paper. Our goal here is to
give the main features of the corresponding picture, so we do not give all the
details of the classification of all open trajectories for general Fermi surfaces.
However, the picture we will describe serves as the “basic description” of
conductivity phenomena and all the other possibilities can be considered as
special additional features for the nongeneric directions of B. Let us also state
here that the final classification of open trajectories for generic Fermi surfaces
was completed in general by Dynnikov in [27], which solves primarily the
Novikov problem. The physical phenomena connected with different types of
open trajectories can be found in detail in the survey articles [30,31].

2.1.3 Transport in 2D Electron Gas and Topology
of Quasiperiodic Functions

Let us now mention a few words about the so-called generalized Novikov
problem in connection with the quasiperiodic functions on the plane with N
quasiperiods. According to the standard definition the quasiperiodic function
in Rm with N quasiperiods (N ≥ m) is a restriction of a periodic function in
RN (with N periods) to any plane Rm ⊂ RN of dimension m linearly embed-
ded in RN . In our situation we will always have m = 2 and the quasiperiodic
functions on the plane will be the restrictions of the periodic functions in RN

to some 2D plane.

Generalized Novikov Problem

Describe the global geometry of open level curves of quasiperiodic function
f(r) on the plane with N quasiperiods.

It is easy to see that the generalized Novikov problem gives the Novikov
problem for the electron trajectories if we put N = 3. Indeed, all the
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trajectories in the planes orthogonal to B can be considered as the level curves
of quasiperiodic functions ε(p)|Π(B) with three quasiperiods. As mentioned
earlier, the general Novikov problem is solved primarily for N = 3. However,
the case N > 3 becomes very complicated from the topological point of view
and no general classification in this case exists at the moment. The only topo-
logical result existing now for the general Novikov problem is the analog of
Zorich theorem (Theorem 1) for the case N = 4 [32] and the general situation
is still under investigation.

In Section 2.3 we consider the applications of generalized Novikov problem
connected with the “superlattice potentials” for the two-dimensional electron
gas in the presence of orthogonal magnetic field. This kind of potentials is
connected with modern techniques of “handmade” modulations of 2D electron
gas such as the holographic illumination, “gate modulation”, piezoelectric
effect, etc. All such modulations are usually periodic in the plane and in many
situations the level curves play an important role for the transport phenomena
in such systems. The most important thing for us will be the conductivity
phenomena in these 2D structures in the presence of orthogonal magnetic
field B. According to the quasiclassical approach the cyclotron electron orbits
drift along the level curves of modulation potential in the magnetic field,
which gives the “drift contribution” to conductivity in the plane. Among the
works devoted to this approach we would like to mention here the article [33],
where this method was introduced for the explanation of “commensurability
oscillations” of conductivity in potential modulated just in one direction, and
[34] where the same approach was used for the explanation of suppression of
these oscillations by the second orthogonal modulation in the periodic case.
Let us add that all these phenomena correspond to the long free electron
motion time, which will now play the role of the “geometric limit” (not B →
∞) in the second situation.

We will show that the generalized Novikov problem can also arise naturally
in these structures if we consider the independent superposition of different
periodic modulations. It can be proved that in this case we always obtain
the quasiperiodic functions where the number of quasiperiods depends on the
complexity of total modulation. The results in Novikov problem can then
help to predict the form of the “drift conductivity” in the limit of long free
electron motion time. In Sect. 2.3 we give the main features of the situation
of superposition of several “1D modulations” where the potentials with a
small number of quasiperiods can arise. The detailed consideration of this
situation can be found in [35]. However, the Novikov problem also arises in a
much more general case of arbitrary superpositions of more complicated (but
periodic) structures.

Finally, we would like to mention that the quasiperiodic functions with
a large number of quasiperiods can be a model for the random potentials
on the plane. The corresponding Novikov problem arises in the percolation
theory for such potentials. We will also discuss this situation at the end of
Sect. 2.3.
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(c)(a) (b)

Fig. 2.6. The abstract surfaces (a), (b), and (c) with genuses 0, 1, and 2,
respectively

2.2 The Classification of Fermi Surfaces
and the “Topological Quantum Numbers”

Let us start with the definitions of genus and topological rank of the Fermi
surface.

Definition 1. Let us consider the phase space T3 = R3/L introduced earlier.
After the identification, every component of the Fermi surface becomes the
smooth orientable two-dimensional surface embedded in T3. We can then intro-
duce the standard genus of every component of the Fermi surface g = 0, 1, 2, ...
according to standard topological classification depending on whether this com-
ponent is a topological sphere, torus, sphere with two holes, etc. (Fig. 2.6).

Definition 2. Let us introduce the topological rank r as the characteristic of
the embedding of the Fermi surface in T3. It is much more convenient in this
case to come back to the total p-space and consider the connected components
of the three-periodic surface in R3.

(1) The Fermi surface has Rank 0 if each of its connected component can
be bounded by a sphere of finite radius.

(2) The Fermi surface has Rank 1 if each of its connected component can
be bounded by the periodic cylinder of finite radius and there are components
that cannot be bounded by the sphere.

(3) The Fermi surface has Rank 2 if each of its connected component that
can be bounded by two parallel (integral) planes in R3 and there are components
that cannot be bounded by a cylinder.

(4) The Fermi surface has Rank 3 if it contains components that cannot
be bounded by two parallel planes in R3.

Figure 2.7a, b, c, d represents the pieces of the Fermi surfaces in R3 with
the topological ranks 0, 1, 2, and 3, respectively. As can be seen the genuses
of the surfaces represented in Fig. 2.7a, b, c, d are also equal to 0, 1, 2, and 3,
respectively. However, the genus and the Topological Rank are not necessary
equal to each other in the general situation.

Let us discuss briefly the connection between the genus and the topological
rank since this will play a crucial role in further consideration.

It is easy to see that the topological rank of the sphere can be only 0 and
the Fermi surface consists in this case of the infinite set of the periodically
repeated spheres S2 in R3.
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Fig. 2.7. The Fermi surfaces (a), (b), (c), (d) with topological ranks 0, 1, 2, and
3, respectively

The topological rank of the torus T2 can take three values r = 0, 1, 2.
Indeed, it is easy to see that all three cases of periodically repeated tori T2

in R3 (Rank 0), periodically repeated “warped” integral cylinders (Rank 1),
and the periodically repeated “warped” integral planes (Rank 2) give the
topological two-dimensional tori T2 in T3 after the factorization (see Fig. 2.8).

It is not difficult to prove that these are the only possibilities that we can
have for embedding of the two-dimensional torus T2 in T3. We note here that
the mean direction of the “warped periodic cylinder” (embedding of Rank 1)
can coincide with any reciprocal lattice vector n1a1 +n2a2 +n3a3 in R3. Also
the “directions” of the corresponding “warped planes” (embedding of Rank 2)

(a) (c)(b)

Fig. 2.8. The periodically repeated tori T2, periodically repeated “warped” integral
cylinders, and the periodically repeated “warped” integral planes in R3



2 Topology, Quasiperiodic Functions,and the Transport Phenomena 43

are always generated by two (linearly independent) reciprocal lattice vectors
m

(1)
1 a1+m

(1)
2 a2+m

(1)
3 a3 and m

(2)
1 a1+m

(2)
2 a2+m

(2)
3 a3. We can thus see that

both the embeddings of Rank 1 and Rank 2 of T2 in T3 are characterized by
some integer numbers connected with the reciprocal lattice. Let us also make
one more remark about the surfaces of Ranks 0, 1, and 2 in this case. Namely,
the case r = 2 actually shows one difference from the cases r = 0 and 1, which
is that the plane in R3 is not homologous to 0 in T3 (i.e., it does not restrict
any domain of “lower energies”) after the factorization. We can conclude that
if these planes appear as the connected components of the physical Fermi
surface (which is always homologous to 0), they should always come in pairs,
Π+ and Π−, which are parallel to each other in R3. The factorization of Π+

and Π− gives then the two tori T2
+, T2

− with the opposite homologous classes
in T3.

It can be shown that the topological rank of any Fermi surface of genus
2 cannot exceed 2 also. The example of the corresponding embedding of such
a component with maximal rank is shown in Fig. 2.7c and represents the two
parallel planes connected by cylinders. We will not give the proof of this
theorem here but just mention that this fact plays an important role in the
classification of nonclosed electron trajectories on the Fermi surface of genus
2. Namely, it can be proved that the open trajectories on the Fermi surface
of genus 2 cannot be actually more complicated than the trajectories on the
surface of genus 1. In particular they always have the “topologically regular
form” in the same way as on the Fermi surface of genus 1 (see Sect. 2.2). Also
the same integral characteristics in the cases when this surface has Rank 1 or
2 as in the case of genus 1 can be introduced for genus 2 (actually for any
genus if rank is equal to 1 or 2).

Finally we would like to mention that the topological rank of the compo-
nents with genus g ≥ 3 can take any value r = 0, 1, 2, 3.

Definition 3. We call the open trajectory topologically regular (corresponding
to “topologically integrable” case) if it lies within the straight line of finite
width in Π(B) and passes through it from −∞ to ∞. We call all other open
trajectories chaotic.

Let us now discuss the connection between the geometry of the nonsingular
electron orbits and the topological properties of the Fermi surface. We briefly
consider here the simple cases of Fermi surfaces of Rank 0, 1, and 2 and then
come to our basic case of general Fermi surfaces having the maximal rank
r = 3. We then have the following situations:

(1) The Fermi surface has topological rank 0.
It is easy to note that in this simplest case all the components of the Fermi

surface are compact (Figs. 2.7a, 2.8a) in R3 and there are no open trajectories
at all.

(2) The Fermi surface has topological rank 1.
In this case we can have both open and compact electron trajectories. How-

ever the open trajectories (if they exist) should be quite simple in this case.
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They can arise only if the magnetic field is orthogonal to the mean direction
of one of the components of Rank 1 (periodic cylinder) and are periodic with
the same integer mean direction (Figs. 2.7b, 2.8b). The corresponding sets of
the directions B/B are just the one-dimensional curves and there cannot be
open regions on the unit sphere for which we can find the open trajectories
on the Fermi surface.

(3) The Fermi surface has topological rank 2.
It can be easily seen that this case gives much more possibilities for the

existence of open orbits for different directions of the magnetic field. In par-
ticular, this is the first case where the open orbits can exist for the generic
directions of B. So, in this case we can have the whole regions on the unit
sphere such that the open orbits present for any direction of B belong to the
corresponding region. It is easy to see, however, that the open orbits also have
quite a simple description in this case. Namely, any open orbit (if it exists) lies
in the straight strip of the finite width for any direction of B not orthogonal to
the integral planes given by the components of Rank 2. The boundaries of the
corresponding strips in the planes Π(B) (orthogonal to B) will be given by
the intersection of Π(B) with the pairs of integral planes bounding the corre-
sponding components of Rank 2. It can also be shown [18,19] that every open
orbit passes through the strip from −∞ to +∞ and cannot turn back. We can
then see that all the trajectories are “topologically regular” in this case also.

Based on the remarks given earlier, the contribution to the conductivity
given by every family of orbits with the same mean direction reveals the strong
anisotropy when ωBτ → ∞ and coincides with the main order with formula
(2.3) for the open periodic trajectories.

Trajectories of this type already have all the features of the general topo-
logically integrable situation.

We start now with the most general and complicated case of arbitrary
Fermi surface of topological rank 3.

We first describe a convenient procedure [26, 27] of reconstruction of the
constant energy surface when the direction of B is fixed.

We will assume that the system (2.1) has generically only the nondegene-
rate singularities having the form of the nondegenerate poles or nondegenerate
saddle points. The singular trajectories passing through the critical points
(and the critical points themselves) divide the set of trajectories into different
parts corresponding to different types of trajectories on the Fermi surface. We
are not interested here in the geometry of compact electron trajectories in
the “geometric limit” ωBτ → ∞. It is not difficult to show that the pieces of
the Fermi surface carrying the compact orbits can be either infinite or finite
cylinders in R3 bounded by the singular trajectories (some of them may be just
points of minimum or maximum) at the bottom and at the top (see Fig. 2.9).

Let us now remove all the parts containing the nonsingular compact tra-
jectories from the Fermi surface. The remaining part,

SF/(compact nonsingular trajectories) = ∪j Sj ,
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B

Fig. 2.9. The cylinder of compact trajectories bounded by the singular orbits (the
simplest case of just one critical point on the singular trajectory)

is a union of the two manifolds Sj with boundaries ∂Sj , which are the compact
singular trajectories. The generic type in this case is a separatrix orbit with
just one critical point like in Fig. 2.9.

It is obvious that the open orbit will not be affected at all by the con-
struction described here and the rest of the Fermi surface gives the same
open orbits as all possible intersections with different planes orthogonal
to B.

Definition 4. We call every piece Sj the “Carrier of open trajectories.”

Let us fill in the holes by topological 2D discs lying in the planes orthogonal
to B and get the closed surfaces (see Fig. 2.10)

S̄j = Sj ∪ (2D discs).

This procedure again gives the periodic surface Sε after the reconstruction
and we can define the “compactified carriers of open trajectories” both in R3

and T3.
It is obvious that the reconstructed surface can be used instead of the

original Fermi surface for the determination of open trajectories. Let us ask a
question: can the reconstructed surface be simpler than the original one?

The answer is positive and moreover it can be proved that “generically” the
reconstructed surface consists of components of genus 1 only. This remarkable
fact gives the very powerful instrument for the consideration of open trajec-
tories on the arbitrary Fermi surface.

In fact, the proof of Theorem 1 was based on the statement that the genus
of every compactified carrier of open orbits Sj is equal to 1 in this case.

Let us now formulate the theorem of Dynnikov [20], which made the second
main breakthrough in the Novikov problem.
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2D discs

B

       orbits
Singular closed

Piece consisting of 
     open orbits

Open orbits

Critical points

Fig. 2.10. The reconstructed constant energy surface with removed compact tra-
jectories and the two-dimensional discs attached to the singular trajectories in the
generic case of just one critical point on every singular trajectory

Theorem 2 (Dynnikov [20]). Let a generic dispersion relation

ε(p) : T3 → R

be given such that for level ε(p) = ε0 the genus g of some carrier of open
trajectories Si is greater than 1. Then there exists an open interval (ε1, ε2)
containing ε0 such that for all ε 
= ε0 in this interval the genus of the carrier
of open trajectories is less than g.

Theorem 2 claims that only the “topologically integrable case” can be
stable with respect to the small variations of energy level also.

The formulated theorems permit us to reduce the consideration of open
orbits in any stable situation to the case of the surfaces of genus 1 where the
Fermi surface can have topological rank 0, 1, or 2 only. It is easy to see that the
Rank 0 cannot appear just by definition of the reconstructed surface S̄ε since
it can contain only the compact trajectories. Rank 1 is possible in S̄ε only
for special directions of B. Indeed, the component of Rank 1 has the mean
integral direction in R3 and can contain the open (periodic) trajectories only
if B is orthogonal to this integral vector in p-space. The corresponding open
trajectories are thus not absolutely stable with respect to the small rotations
of B and cannot exist for the open region on the unit sphere.

We can then claim that the only generic situation for Sε is a set of com-
ponents of Rank 2, which are the periodic warped planes in this case. The
corresponding electron trajectories can then belong just to “Topologically
integrable” case being the intersections of planes orthogonal to B with the
periodically deformed planes in the p-space.
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An important property of the compactified components of genus 1 arising
for the generic directions of B is the following: they are all parallel on average
to R3 and do not intersect each other. This property mentioned in [28] and
called later the “topological resonance” plays an important role in the physical
phenomena connected with geometry of open trajectories. In particular, all
the stable topologically regular open trajectories in all planes orthogonal to
B have the same mean direction and give the same form (2.3) of contribution
to conductivity in the appropriate coordinate system common for all of them.
This fact gives the experimental possibility of measuring the mean direction
of noncompact topologically regular orbits both in x and p spaces from the
anisotropy of conductivity tensor σik.

We reiterate that the surface Sε is the abstract construction depending on
the direction of B and does not exist a priori in the Fermi surface SεF . The
important fact, however, is the stability of the surface Sε with respect to the
small rotations of B. This means in particular that the common direction of
the components of Rank 2 is locally stable with respect to the small rotations
of B, which can then be found from the conductivity experiments. From the
physical point of view, all the regions on the unit sphere where the stable open
orbits exist can be represented as the “stability zones” Ωα such that each zone
corresponds to some integral plane Γα common to all the points of stability
zone Ωα. The plane Γα is then the integral plane in reciprocal lattice, which
defines the mean directions of open orbits in p-space for any direction of B
belonging to Ωα just as the intersection with the plane orthogonal to B. As
can be easily seen from the form of (2.3), this direction always coincides with
the unique direction in R3 corresponding to the decrease of conductivity as
ωBτ → ∞.

The corresponding integral planes Γα can then be given by three integer
numbers (n1

α, n2
α, n3

α) (up to the common multiplier) from the equation

n1
α[x]1 + n2

α[x]2 + n3
α[x]3 = 0,

where [x]i are the coordinates on the basis {a1,a2,a3} of the reciprocal lat-
tice, or equivalently

n1
α(x, l1) + n2

α(x, l2) + n3
α(x, l3) = 0,

where {l1, l2, l3} is the basis of the initial lattice in the coordinate space.
We see then that the direction of conductivity decreasing η̂ = (η1, η2, η3)

satisfies the relation

n1
α(η̂, l1) + n2

α(η̂, l2) + n3
α(η̂, l3) = 0

for all the points of stability zone Ωα, which makes possible the experimental
observation of numbers (n1

α, n2
α, n3

α).
The numbers (n1

α, n2
α, n3

α) are called in [28] the “topological quantum num-
bers” of a dispersion relation in metal.

We can now consider the result of [2] about the “thin spatial net” as
a particular case of this general theorem where the integer planes take the
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simplest possibility of being the main planes xy, yz, xz. If we now introduce
the “topological quantum numbers” for this situation, we will have only the
triples (±1, 0, 0), (0,±1, 0), and (0, 0,±1) for this Fermi surface.

In general, we can state that the unit sphere should be divided into (open)
parts where the open orbits are absent on the Fermi level for given directions
of B and “stability zones” Ωα where the open orbits exist on the Fermi level
and have “topologically regular” form. Each stability zone corresponds to
the triple of “topological quantum numbers” giving the integral direction of
periodically deformed two-dimensional planes in S̄εF(B), which are swept by
the zero eigen-vector of σik for B ∈ Ωα.

We now state that the “topologically regular” trajectories are generic open
trajectories, nonetheless they are not ideal for rather complicated Fermi sur-
faces. Namely, for rather complicated Fermi surfaces and the special directions
of B, the chaotic cases can also arise (Tsarev, Dynnikov).

It was first shown by Tsarev [36] that the more complicated chaotic open
orbits can still exist on rather complicated Fermi surfaces SF. An example
of an open trajectory that does not lie in any finite strip of finite width was
constructed. However, the trajectory had in this case the asymptotic direc-
tion of not even being restricted by any straight strip of finite width in the
plane orthogonal to B. The corresponding asymptotic behavior of conductiv-
ity should also reveal the strong anisotropy properties in the plane orthogonal
to B although the exact form of σik will be slightly different from (2.3) for
this type of trajectories. For the same reason, the asymptotic direction of orbit
can be measured experimentally in this case.

The more complicated examples of chaotic open orbits were constructed
in [26] for the Fermi surface having genus 3. These types of open orbits do
not have any asymptotic direction in the planes orthogonal to B and have a
rather complicated form of “walking everywhere” in these planes.

The corresponding contribution to σik is also very different for this kind of
trajectories [37]. In particular, it appears that this contribution becomes 0 in
all the directions including the direction of B for B → ∞. The total conductiv-
ity tensor σik has then only the contribution of compact electron trajectories
in the conductivity along B, which does not disappear when B → ∞. The
corresponding effect can be observed experimentally as the local minima of
the longitudinal (i.e., parallel to B) conductivity for the points of the unit
sphere where this kind of trajectories can appear. A more detailed description
of σik in this case can be found in [37].

Let us add that Dynnikov proved recently that the measure of chaotic cases
on the unit sphere is 0 for generic Fermi surfaces [26, 27]. The systematic
investigation of the open orbits was completed in general after the works
[17, 20, 26, 28] in [27]. In particular the total picture of different types of the
open orbits for generic dispersion relations was presented. Let us formulate
here the main results of [27] in the form of a Theorem.
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Theorem 3 (Dynnikov [27]). Let us fix the dispersion relation ε = ε(p)
and the direction of B of irrationality 3 and consider all the energy levels for
εmin ≤ ε ≤ εmax. Then:

(1) The open electron trajectories exist for all the energy values ε belong-
ing to the closed connected energy interval ε1(B) ≤ ε ≤ ε2(B), which can
degenerate to just one energy level ε1(B) = ε2(B) = ε0(B).

(2) For the case of the nontrivial energy interval the set of compactified
carriers of open trajectories Sε is always a disjoint union of two-dimensional
tori T2 in T3 for all ε1(B) ≤ ε ≤ ε2(B). All the tori T2 for all the energy
levels do not intersect each other and have the same (up to the sign) indivisible
homology class c ∈ H2(T3, Z), c 
= 0. The number of tori T2 is even for
every fixed energy level and the corresponding covering Sε in R3 is a locally
stable family of parallel (“warped”) integral planes Π2

i ⊂ R3 with common
direction given by c. The form of Sε described here is locally stable with the
same homology class c ∈ H2(T3) under small rotations of B. All the open
electron trajectories at all the energy levels lie in the strips of finite width
with the same direction and pass through them. The mean direction of the
trajectories is given by the intersections of planes Π(B) with the integral
family Π2

i for the corresponding “stability zone” on the unit sphere.
(3) The functions ε1(B), ε2(B) defined for the directions of B of irra-

tionality 3 can be continued on the unit sphere S2 as the piecewise smooth
functions such that ε1(B) ≥ ε2(B) everywhere on the unit sphere.

(4) For the case of trivial energy interval ε1 = ε2 = ε0 the corresponding
open trajectories may be chaotic. The carrier of the chaotic open trajectory is
homologous to 0 in H2(T3, Z) and has genus ≥ 3. For the generic energy level
ε = ε0 the corresponding directions of magnetic fields belong to the countable
union of the codimension 1 subsets. Therefore a measure of this set is equal
to 0 on S2.

We give here the results connected with generic directions of B and do
not consider the special cases when B is purely or “partly” rational. The
corresponding effects are actually simpler than formulated earlier and can be
easily added to this general picture. Survey articles [27,29–31] provide all the
details (both from mathematical and physical point of view).

2.3 Quasiperiodic Modulations of 2D Electron Gas
and the Generalized Novikov Problem

In this section we provide a general description about the quasiperiodic mod-
ulations of 2D electron gas and the main topological aspects for the special
class of such structures. Let us first discuss about different modern modulation
techniques and the quasiclassical electron behavior in such systems.
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We first point here the holographic illumination of high-mobility 2D elec-
tron structures (AlGaA–GaAs heterojunctions) at temperatures T ≤ 4.2 K
(see, for example, [38]). In these experiments the expanded laser beam was
split into two parts, which gave an interference picture with the period a on
the 2D sample. The illumination caused the additional ionization of atoms
near the 2D junction, which remained for a rather long period of time after
the illumination. During this relaxation time, the additional periodic poten-
tial V (r) = V (x), V (x) = V (x + a) arose in the plane and the electron
behavior was determined by the orthogonal magnetic field B and the poten-
tial V (x).

The quasiclassical consideration for the case |V (x)| 	 εF was first consid-
ered by Beenakker [33] for the explanation of “commensurability oscillations”
in such structures found in [38]. According to this approach the quasiclassical
electrons near the Fermi level move around the cyclotron orbits in the mag-
netic field and drift due to potential V (x) in the plane. Since only the electrons
near Fermi level εF play the main role in conductivity, we can introduce the
characteristic cyclotron radius rB = m∗vF/eB for the Fermi velocity vF. The
corresponding drift of the electron orbits near the Fermi level will then be
determined by the averaged effective potential V eff

B (x) given by the averaging
of V (r) = V (x) over the cyclotron orbit with radius rB centered at the point
r (Fig. 2.11).

The potential V eff
B (x) is different from V (x) but has the same symmetry

and also depends only on x. The drift of the cyclotron orbits is along the
level curves of V eff

B (x), which are very simple in this case (just the straight
lines along the y-axis) and the corresponding velocity vdrift is proportional
to the absolute value of gradient |V eff

B (x)| at each level curve. The analytic
dependence of |V eff

B (x)| on the value of B (based on the commensurability of
2rB with the (integer number)× a) was used in [33] for the explanation of the
oscillations of conductivity along the fringes with the value of B.

rBr
V(x)

B

Fig. 2.11. The averaging of the the potential V (x) over the cyclotron orbit with
radius rB centered at the point r
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In article [34] the situation with the double-modulated potentials made
by the superposition of two interference pictures was also considered. The
corresponding potential V (r) is double periodic in R2 in this case and the same
is true for potentials V eff

B (r). The consideration used the same quasiclassical
approach for the potential V eff

B (r) based on the analysis of its level curves.
It was then shown in [34] that the second modulation should suppress the
commensurability oscillations in this case, which disappear completely for the
equal intensities of two (orthogonal) interference pictures.

It is also obvious that all the open drift trajectories can be only periodic
in the case of periodic V eff

B (r).
It seems that the situation with the quasiperiodic modulations of 2D elec-

tron gas did not appear in experiments. However, we think that this situation
is also very natural for the technique described earlier and can be considered
from the point of view of the generalized Novikov problem. The correspond-
ing approach was developed in [35] for the special cases of superpositions of
several (three and four) interference pictures on the plane. Nonetheless, as we
already mentioned, the Novikov problem also arises actually for any picture
given by superposition of several periodic pictures in the plane. The corre-
sponding potentials can have many quasiperiods in this case and the Novikov
problem can then reveal much more complicated (chaotic) properties than
described in [35].

We next describe here just the main points of “topologically regular” be-
havior in the case of the superpositions of three and four interference pictures,
which give the quasiperiodic potentials V (r) and V eff

B (r) with three and four
quasiperiods on the plane. Unlike the previous works we do not pay much at-
tention to the analytic dependence on B and investigate mainly the geometric
properties of conductivity in this situation.

Before we start the geometric consideration, we wish to also state that the
holographic illumination is not a unique way of producing the superlattice
potentials for the two-dimensional electron gas. Let us mention here the works
[39–49] where the different techniques using the biasing of the specially made
metallic gates and the piezoelectric effect were considered. Both 1D and 2D
modulated potentials as well as more general periodic potentials with square
and hexagonal geometry appeared in this situation. Actually these techniques
give much more possibilities to produce the potentials of different types with
the quasiperiodic properties.

Let us now have three independent interference pictures on the plane with
three different generic directions of fringes η1, η2, η3 and periods a1, a2, a3 (see
Fig. 2.12).

The total intensity I(r) will be the sum of intensities

I(r) = I1(r) + I2(r) + I3(r)

of the independent interference pictures.
We assume that there are at least two noncoinciding directions (say η1, η2)

among the set (η1, η2, η3).
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Fig. 2.12. The schematic sketch of the three independent interference pictures on
the plane with different periods and intensities

It can be shown that the potentials V (r) and V eff
B (r) can be represented

in this situation as the quasiperiodic functions with three quasiperiods in the
plane.

Let us now introduce the important definition of the “quasiperiodic group”
acting on the potentials described earlier.

Definition 5. Let us fix the directions η1, η2, η3 and periods a1, a2, a3 of the
interference fringes in Fig. 2.12 and consider all independent parallel shifts of
positions of different interference pictures in R2. All the potentials V ′(r) (and
the corresponding V eff ′

B (r)) made in this way are related by the transforma-
tions of a quasiperiodic group.

According to the definition the quasiperiodic group is a three-parametric
Abelian group isomorphic to the three-dimensional torus T3 due to the peri-
odicity of every interference picture.4

We state that potential V (r) is generic if it has no periods in R2, is periodic
if it has two linearly independent periods in R2, and is “partly periodic” if it
has just one (up to the integer multiplier) period in R2.

It can also be shown that the quasiperiodic group does not change the
“periodicity” of potentials V (r), V eff

B (r).
The results for the Novikov problem can also be applied in this situation.

We formulate here the main results for the generic potentials V (r) (the special
additional features can be found in [35]). Let us formulate here the theorem
from [35] about the drift trajectories for the generic potentials of this kind
based on the topological theorems for Novikov problem in 3-dimensional case
(formulated earlier).

4 It is obvious that the quasiperiodic group contains the ordinary translations as
the algebraic subgroup.
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Theorem 4 [35]. Let us fix the value of B and consider the generic quasi-
periodic potential V eff

B (r) made by three interference pictures and taking the
values in some interval εmin(B) ≤ V eff

B (r) ≤ εmax(B). Then:
(1) Open quasiclassical trajectories V eff

B (r) = c always exist either in the
connected energy interval

ε1(B) ≤ c ≤ ε2(B)

(εmin(B) < ε1(B) < ε2(B) < εmax(B)) or just at one energy value c = ε0(B).
(2) For the case of the finite interval (ε1(B) < ε2(B)) all the nonsingular

open trajectories correspond to topologically regular case, i.e., lie in the straight
strips of the finite width and pass through them. All the strips have the same
mean directions for all the energy levels c ∈ [ε1(B), ε2(B)] such that all the
open trajectories are on average parallel to each other for all values of c.

(3) The values ε1(B), ε2(B), or ε0(B) are the same for all the generic
potentials connected by the “quasiperiodic group.”

(4) For the case of the finite energy interval (ε1(B) < ε2(B)) all the non-
singular open trajectories also have the same mean direction for all the generic
potentials connected by the “quasiperiodic group” transformations.

We again see that the “topologically regular” open trajectories are also
generic for this situation as seen earlier.

Let us now consider the asymptotic behavior of conductivity tensor when
τ → ∞ (mean free electron motion time). We consider here only the “topo-
logically regular” case. Let us point out that the full conductivity tensor can
be represented as the sum of two terms

σik
0 (B) = σik

0 (B) + ∆σik(B).

In the approximation of the drifting cyclotron orbits, the parts σik
0 (B) and

∆σik(B) can be interpreted as caused by the (infinitesimally small) difference
in the electron distribution function on the same cyclotron orbit (weak angular
dependence) and the (infinitesimally small) difference in the occupation of
different trajectories by the centers of cyclotron orbits at different points of
R2 (on the same energy level) as the linear response to the (infinitesimally)
small external field E, respectively.

The first part σik
0 (B) has the standard asymptotic form:

σik
0 (B) ∼ ne2τ

meff

(
(ωBτ)−2 (ωBτ)−1

(ωBτ)−1 (ωBτ)−2

)
for ωBτ � 1 due to the weak angular dependence (∼ 1/ωBτ) of the distribu-
tion function on the same cyclotron orbit. We then have that the correspond-
ing longitudinal conductivity decreases for τ → ∞ in all the directions in R2

and the corresponding condition is just ωBτ � 1 in this case.
For the part ∆σik(B) the limit τ → ∞ should, however, be considered

as the condition that every trajectory is passed for a rather long time by the
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drifting cyclotron orbits to reveal its global geometry. Thus another parameter
τ/τ0, where τ0 is the characteristic time of completion of close trajectories,
should be used in this case and we should put the condition τ/τ0 � 1 to have
the asymptotic regime for ∆σik(B). In this situation the difference between
the open and closed trajectories plays the main role, and the asymptotic
behavior of conductivity can be calculated in the form analogous to that used
in [1–3] for the case of normal metals. That is:

∆σik(B) ∼ ne2τ

meff

(
(τ0/τ)2 τ0/τ
τ0/τ (τ0/τ)2

)
in the case of closed trajectories and

∆σik(B) ∼ ne2τ

meff

(
∗ τ0/τ

τ0/τ (τ0/τ)2

)
(∗ ∼ 1) for the case of open topologically regular trajectories if the x-axis
coincides with the mean direction of trajectories.

The condition τ/τ0 � 1 is much stronger than ωBτ � 1 in the situation
described here according to the definition of the slow drift of the cyclotron
orbits. We can keep then just this condition in our further considerations and
assume that the main part of conductivity is given by ∆σik(B) in this limit.
It is also obvious that the magnetic field B should not be “very strong” in
this case.

Based on these remarks, we can now write the main part of the conduc-
tivity tensor σik(B) in the limit τ → ∞ for the case of topologically regular
open orbits. Let us take the x-axis along the mean direction of open orbits
and the y-axis orthogonal to x. The asymptotic form of σik, i, k = 1, 2 can
then be written as:

σik ∼ ne2τ

meff

(
∗ τ0/τ

τ0/τ (τ0/τ)2

)
, τ0/τ → 0, (2.4)

where ∗ is some value of the order of 1 (constant as τ0/τ → 0).
The asymptotic form of σik makes possible the experimental observation

of the mean direction of topologically regular open trajectories if the value
τ/τ0 is rather big.

Let us now introduce the “topological numbers” characterizing the regular
open trajectories analogous to those introduced in [28] for the case of normal
metals. We will first give the topological definition of these numbers using the
action of the “quasiperiodic group” on the quasiperiodic potentials [35].

We assume that we have the “topologically integrable” situation where
the topologically regular open trajectories exist in some finite energy interval
ε1(B) ≤ c ≤ ε2(B). According to Theorem 4 the values ε1(B), ε2(B) and
the mean directions of open trajectories are the same for all the potentials
constructed from our potential with the aid of the “quasiperiodic group.”
It also follows from the topological picture that all the topologically regular
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trajectories are absolutely stable under the action of the “quasiperiodic group”
for the generic V eff ′

B (r) and can just “crawl” in the plane for the continuous
action of such transformations.

We take the first interference picture (η1, a1) and shift continuously the
interference fringes in the direction orthogonal to η1 to the distance a1 keeping
two other pictures unchanged. At the end we will have the same potentials
V (x, y) and V eff

B (x, y) due to the periodicity of the first interference picture
with period a1. Let us fix now some energy level c ∈ (ε1(B), ε2(B)) and look at
the evolution of nonsingular open trajectories (for V eff

B (x, y)) while making our
transformation. We know that we should have the parallel open trajectories
in the plane each time and the initial picture should coincide with the final
according to the construction. The form of trajectories can change during the
process but their mean direction will be the same according to Theorem 4
(“topological resonance”).

We can then claim that every open trajectory will be “shifted” to another
open trajectory of the same picture by our continuous transformation. It is
not difficult to prove that all the trajectories will then be shifted by the same
number of positions n1 (positive or negative), which depends on the potential
V eff

B (x, y) (Fig. 2.13).
The number n1 is always even since all the trajectories appear by pairs

with the opposite drift directions.
Let us now do the same with the second and the third sets of the inter-

ference fringes and get an integer triple (n1, n2, n3), which is a topological
characteristic of potential V eff

B (x, y) (the “positive” direction of the numera-
tion of trajectories should be the same for all these transformations).

The triple (n1, n2, n3) can be represented as:

(n1, n2, n3) = M (m1,m2,m3),

where M ∈ Z and (m1,m2,m3) is the indivisible integer triple.

n1

n1

n1

n1

-

-

-

-
-

-

-
-

+ +

+

+
+

+

Fig. 2.13. The shift of “topologically regular” trajectories by a continuous trans-
formation generated by the special path in the “quasiperiodic group”
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Fig. 2.14. The functions X(r), Y (r), and Z(r) on the plane

The numbers (m1,m2,m3) (defined up to the common sign) play now
the role of “topological numbers” for this situation. For direct experimental
observation of these numbers, the connection between these numbers and
the mean direction of the “topologically regular” trajectories can play an
important role. This connection is described as follows.

Let us draw three straight lines q1, q2, q3 with the directions η1, η2, η3

(Fig. 2.12) and choose the “positive” and “negative” half-planes for every line
qi on the plane. Let us now consider three linear functions X(r), Y (r), Z(r)
on the plane that are the distances from the point r to the lines q1, q2, q3 with
the signs “+” or “−” depending on the half-plane for the corresponding line
qi (Fig. 2.14). Let us choose here the signs “+” or “−” such that the gradients
of X(r), Y (r), Z(r) coincide with directions of shifts of the corresponding
interference pictures in the definition of (m1,m2,m3).

Theorem 5 [35]. Consider the functions

X ′(r) = X(r)/a1, Y ′(r) = Y (r)/a2, Z ′(r) = Z(r)/a3

in R2. The mean direction of the regular open trajectories is given by the linear
equation:

m1X
′(x, y) + m2Y

′(x, y) + m3Z
′(x, y) = 0, (2.5)

where (m1,m2,m3) is the indivisible integer triple introduced earlier.

Let us now describe the situation with four independent sets of interference
fringes in the plane (see also [35]). In general we get here the quasiperiodic
potentials V (r), V eff

B (r) with four quasiperiods. The situation in this case is
more complicated than in the case N = 3 and no general classification of
open trajectories exists at the time. At the moment only the theorem anal-
ogous to Zorich result can be formulated in this situation [32]. According to
the Novikov theorem we can claim that the “small perturbations” of purely
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periodic potentials having four quasiperiods have the “topologically regular”
level curves like in the previous case.

The purely periodic potentials V (r) give the same dense set in the space
of parameters η1, η2, η3, η4, a1, a2, a3, a4 and can be found in any small open
region of this space. The Novikov theorem claims then that every potential
of this kind can be surrounded by the “small open ball” in the space of pa-
rameters η1, η2, η3, η4, a1, a2, a3, a4 where the open level curves will always
demonstrate the “topologically regular” behavior. The set of potentials thus
obtained has finite measure among all potentials and the “topologically reg-
ular” open trajectories can be found with finite probability also in this case.
However, we do not claim here that the chaotic behavior has measure 0 for
four quasiperiods and moreover we also expect the nonzero probability for the
chaotic trajectories in this more complicated case.

The topologically regular cases demonstrate here the same “regularity
properties” as in the previous case including the “Topological numbers.” Thus,
we can introduce in the same way the action of the quasiperiodic group on the
space of potentials with four quasiperiods and define in the same way the four
tuples (m1,m2,m3,m4) of integer numbers characterizing the topologically
regular cases in this situation.

Also, the analogous theorem about mean directions of the regular trajec-
tories can be formulated in this case. Namely, if we introduce the functions
X(r), Y (r), Z(r), W (r) in the same way as for the case of three quasiperiods
(above) and the corresponding functions

X ′(r) = X(r)/a1, . . . ,W ′(r) = W (r)/a4,

we can write the equation for the mean direction of open trajectories on the
plane in the form:

m1X
′(r) + m2Y

′(r) + m3Z
′(r) + m4W

′(r) = 0.

The numbers (m1,m2,m3,m4) are stable with respect to the small vari-
ations of η1, η2, η3, η4, a1, a2, a3, a4 (and the intensities of the interference
pictures I1, I2, I3, I4) and correspond again to some “stability zones” in this
space of parameters.

A brief mention is now made about the limit of Novikov problem for large
values of N . The following problem can be formulated as:

Give a description of global geometry of the open level curves of quasiperi-
odic function V (r) in the limit of large numbers of quasiperiods.

We can claim that the open level curves should exist here also in the con-
nected energy interval [ε1, ε2] on the energy scale, which can degenerate just
to one point ε0.5 We expect that the “topologically regular” open trajecto-
ries can also exist in this case. However the probability of “chaotic behavior”
should increase for the cases of large N , which is closer now to random po-
tential situation. The corresponding behavior can be considered then as the
5 The proof given in [24] for the case of 3 quasiperiods works actually for any N .
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“percolation problem” in special models of random potentials given by quasi-
periodic approximations. Certainly, this model can be quite different from the
others. Nevertheless, we expect a similar behavior of the chaotic trajectories
for rather big N also in this rather special model. This area, however, is still
under investigation.

References

1. Lifshitz, I.M., Azbel, M.Ya., Kaganov, M.I.: Sov. Phys. JETP 4, 41 (1957)
2. Lifshitz, I.M., Peschansky, V.G.: Sov. Phys. JETP 8, 875 (1959)
3. Lifshitz, I.M., Peschansky, V.G.: Sov. Phys. JETP 11, 137 (1960)
4. Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 8, 383 (1959)
5. Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 9, 311(1959)
6. Alexeevsky, N.E., Gaidukov, Yu.P.: I.M.Lifshitz, V.G.Peschansky. Sov. Phys.

JETP 12:5, 837 (1960)
7. Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 10, 481 (1960)
8. Gaidukov, Yu.P.: Sov. Phys. JETP 10, 913 (1960)
9. Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 14(2), 256 (1962)

10. Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 15(1), 49 (1962)
11. Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 16(6), 1481 (1963)
12. Lifshitz, I.M., Kaganov, M.I.: Sov. Phys. Usp. 2, 831 (1960)
13. Lifshitz, I.M., Kaganov, M.I.: Sov. Phys. Usp. 5, 411 (1962)
14. Lifshitz, I.M., Azbel, M.Ya., Kaganov, M.I.: Electron Theory of Metals. Moscow,

Nauka (1971) (Translated: Consultants Bureau, New York, 1973)
15. Abrikosov, A.A.: Fundamentals of the Theory of Metals. “Nauka”, Moscow

(1987) (Translated: North-Holland, Amsterdam, 1998)
16. Novikov, S.P.: Russian Math. Surveys 37, 1 (1982)
17. Zorich, A.V.: Russian Math. Surveys 39, 287 (1984)
18. Dynnikov, I.A.: Russian Math. Surveys 57, 172 (1992)
19. Dynnikov, I.A.: Russian Math. Surveys 58 (1993)
20. Dynnikov, I.A.: “A proof of Novikov’s conjecture on semiclassical motion of

electron.” Math. Notes 53:5, 495 (1993)
21. Novikov, S.P.: Proc. Steklov Inst. Math. 1 (1986)
22. Novikov, S.P.: “Quasiperiodic structures in topology”. Proc. Conference “Topo-

logical Methods in Mathematics”, dedicated to the 60th birthday of J.Milnor,
June 15–22, S.U.N.Y. Stony Brook, 1991. Publish of Perish, Houston, TX, pp.
223–233 (1993)

23. Novikov, S.P.: Proc. Conf. of Geometry Tel Aviv University (1995) December
15–26, 1993

24. Dynnikov, I.A.: PhD Theses, Moscow State University, Dept. of Math. and
Mech., Scientific Supervisor – S.P. Novikov, Moscow (1996)

25. Leo, R.D.: PhD Theses. University of Maryland. Department of Math., Scientific
Supervisor – S.P. Novikov, College Park, MD 20742, USA

26. Dynnikov, I.A.: “Semiclassical motion of the electron. A proof of the Novikov
conjecture in general position and counterexamples.” Editors: V.M.Buchstaber,
S.P.Novikov. Advances in the Mathematical Sciences. Solitons, Geometry, and
Topology: On the Crossroad. American Mathematical Society Translations, Se-
ries 2, Vol. 179 (1997)



2 Topology, Quasiperiodic Functions,and the Transport Phenomena 59

27. Dynnikov, I.A.: Russian Math. Surveys 54, 21 (1999)
28. Novikov, S.P., Maltsev, A.Ya.: ZhETP Lett. 63, 855 (1996)
29. Novikov, S.P., Maltsev, A.Ya.: Physics-Uspekhi 41(3), 231 (1998)
30. Maltsev, A.Ya., Novikov, S.P.: ArXiv: math-ph/0301033, Bulletin of Braz. Math.

Soc., New Series 34 (1), 171–210 (2003)
31. Maltsev, A.Ya., Novikov, S.P.: ArXiv: cond-mat/0304471
32. Novikov, S.P.: Russian Math. Surveys 54 (3), 1031 (1999)
33. Beenakker, C.W.J.: Phys. Rev. Lett. 62, 2020 (1989)
34. Grant, D.E., Long, A.R., Davies, J.H.: Phys. Rev. B 61 (13), 127 (2000)
35. Maltsev, A.Ya.: ArXiv: cond-mat/0302014
36. Tsarev, S.P.: Private communication. (1992–93)
37. Maltsev, A.Ya.: ZhETP 85, 934 (1997)
38. Weiss, D., Klitzing, K.V., Ploog, K., Weimann, G.: Europhys. Lett. 8 (2), 179

(1989)
39. Alves, E.S., Beton, P.H., Henini, M.: L. Eaves, P.C. Main, O.H. Hughes, G.A.

Toombs, S.P. Beaumont, C.D.W. Wilkinson. J. Phys. Condens. Matter 1, 8257
(1989)

40. Ismail, K., Antoniadis, D.A., Smith, H.I., Liu, C.T.: K. Nakamura, D.C. Tsui.
J. Vac. Sci. Technol. B 7, 2000 (1989)

41. Ismail, K., Smith III, T.P., Masselink, W.T., Smith, H.I.: Appl. Phys. Lett. 55,
2766 (1989)

42. Fang, H., Stiles, P.J.: Phys. Rev. B 41 (10), 171 (1990)
43. Toriumi, A., Ismail, K., Burkhardt, M., Antoniadis, D.A., Smith, H.I.: Phys.

Rev. B 41 (12), 346 (1990)
44. Puechner, R.A., Ma, J., Mezenner, R., Liu, W.-P., Kriman, A.M., Maracas,

G.N., Bernstein, G., Ferry, D.K., Chu, P. Wieder, H.H., Newman, P.: Surf. Sci.
228, 520 (1990)

45. Weiss, D., Klitzing, K.V., Ploog, K.: and G. Weimann, Surf. Sci. 229, 88 (1990)
46. Gerhardts, R.R., Weiss, D., Wulf, U.: Phys. Rev. B 43, 5192 (1991)
47. Davies, J.H., Larkin, I.A.: Phys. Rev. B 49, 4800 (1994)
48. Larkin, I.A., Davies, J.H., Long, A.R., Cusco, R.: Phys. Rev. B 56 (15), 242

(1997)
49. Davies, J.H., Petticrew, D.E., Long, A.R.: Phys. Rev. B 58 (10), 789 (1998)
50. Dynnikov, I.A.: “Surfaces in 3-Torus: Geometry of plane sections.” Proc.

ECM2 (Budapest, July 1996). Progress in Mathematics, Vol. 168, pp. 162–177,
Birkhauser, Basel, 1998

51. Dynnikov, I.A., Maltsev, A.Ya.: JETP 85, 205 (1997)
52. Zorich, A.V.: Proc. “Geometric Study of Foliations”/ed. T. Mizutani et al.

World Scientific, Singapore: 479–498 (1994) (Tokyo, November 1993)


