
Editorial

This volume starts a new subline of Lecture Notes in Artificial Intelligence, called

AI-SYSTEMS

focusing on the most important systems and prototypical developments in arti-
ficial intelligence.

We have chosen an initiative of the year 2004 as the starting date to com-
memorate the 50th anniversary of the first time a mathematical theorem was
proven by a computer system: Martin Davis’ implementation of the Presburger
Fragment of first-order logic proved the mind-stretching result that the sum of
two even numbers is again even.

While the first volumes in this category will present – for historical reasons
– today’s internationally most relevant systems from the field of automated rea-
soning, we shall soon solicit detailed presentations of individual systems as well
as systems from the other major subareas of AI.

October 2005 Jörg Siekmann
Alfred Hofmann
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Foreword

Our compiler, Freek Wiedijk, whom everyone interested in machine-aided de-
duction will thank for this thought-provoking collection, set his correspondents
the problem of proving the irrationality of the square root of 2. That is a nice,
straight-forward question. Let’s think about it geometrically – and intuitively.

The original question involved comparing the side with the diagonal of a
square. This reduces to looking at an isosceles right triangle. For such a triangle,
the proof of the Pythagorean Theorem is obvious. As we can see from the figure,
the squares on the legs are made up of two copies of the original triangle, while
the square on the hypothenuse requires four copies. The question is whether a
leg is commensurable with the hypothenuse.

Call the original triangle ABC, with the right angle at C. Let the hy-
pothenuse AB = p, and let the legs AC = BC = q. As remarked, p2 = 2q2.

Reflect ABC around AC obtaining the congruent copy ADC. On AB posi-
tion E so that BE = q. Thus AE = p − q. On CD position F so that BF = p.
Thus DF = 2q−p. The triangle BFE is congruent to the original triangle ABC.
EF is perpendicular to AB, the lines EF and AD are parallel.

Now, position G on AD so that AG = EF = q. Since AEFG is a rectangle,
we find AG = q. Thus, DG = FG = AE = p − q. So, the triangle DFG is an
isosceles right triangle with a leg = p − q and hypothenuse = 2q − p.

If there were commensurability of p and q, we could find an example with
integer lengths of sides and with the perimeter p + 2q a minimum. But we just
constructed another example with a smaller perimeter p, where the sides are also
obviously integers. Thus, assuming commensurability leads to a contradiction.
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As one of the contributors remarks, this reduction of (p, q) to (p − q, 2q − p)
is very, very easy to accomplish with algebra – and the observation avoids the



VIII Foreword

lemmas about even and odd numbers in finishing the required proof. But, what
does this really mean? As I have often told students, “Algebra is smarter than
you are!” By which I mean that the laws of algebra allow us to make many steps
which combine information and hide tracks after simplifications, especially by
cancellation. Results can be surprising, as we know from, say, the technique of
generating functions.

In the case of the isosceles right triangle (from the diagonal of the square),
an illumination about meaning can be obtained best from thinking about the
Euclidean Algorithm. For a pair of commensurable magnitudes (a, b), the find-
ing of “the greatest common measure” can be accomplished by setting up a
sequence of pairs, starting with (a, b), and where the next pair is obtained from
the preceding one by subtracting the smaller magnitude from the larger – and by
replacing the larger by this difference. When, finally, equal pairs are found, this
is the desired greatest common measure. (And, yes, I know this can be speeded
up by use of the Division Algorithm.)

In our case we would have: (p, q), (p−q, q), (p−q, 2q−p), . . . . If we do some
calculation with ratios (as the ancient Greeks knew how to do), we remark that
the Pythagorean Theorem gives us first p/q = 2q/p. (Look at the triangles to
see this: all isosceles right triangles are similar!) From this follows (p − q)/q =
(2q − p)/p. Now switch extremes to conclude that p/q = (2q − p)/(p − q). This
shows that the third term of our run of the Euclidean Algorithm gives a pair
with the same ratio (when the larger is compared with the smaller) as for the
initial pair. In any run of the Euclidean Algorithm, if a ratio ever repeats, then
the algorithm never finishes. Why? Because the pattern of larger and smaller
quantities is going to repeat and, thus, no equals will be found. Hence, the
magnitudes of the original pair are incommensurable. Indeed, Exodus knew that
a/b = c/d could be defined by saying that the two runs of the algorithm starting
with (a, b) and (c, d), respectively, have the same patterns of larger and smaller.

In later centuries it was recognized that the Euclidean Algorithm is directly
connected with the (simple) continued fraction expansion. Moreover, as Lagrange
showed, the infinite, eventually periodic, simple continued fractions give exactly
the positive irrational roots of quadratic equations (with integer coefficients).
Perhaps, then, it might have been a more interesting challenge to prove the
Lagrange Theorem itself, but probably fewer groups would have responded.

Alas, I have never spent any extended time with the provers/checkers repre-
sented in this collection. I did invest many profitable hours in using the equa-
tional theorem prover, Waldmeister: it is small, yet very effective on many
problems involving equational deductions. Unfortunately, some theorem provers
based on first-order logic do not really incorporate all the techniques of equa-
tional provers, so with certain problems time and/or space may run out before
finding a proof. It is imperative that implementers of these systems now take
advantage of specialized algorithms if ever mathematicians are going to become
interested in using a machine-based method.

We can also see clearly from the examples in this collection that the notations
for input and output have to be made more human readable. Several systems do
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generate LaTeX output for the discovered proofs, but perhaps additional thought
about formatting output might be valuable. The Theorema Project (system 12 in
the present list) made readability of proofs a prime requirement, and their report
shows their success. However, the objective Bruno Buchberger set originally for
the project was to produce a tool for pedagogic use, not research. Thus, the
power of their system does not yet reach what, say, the HOL-based systems
surveyed in this report have. Also, the question of the discovery of a proof is
different from checking a proffered proof. Hence, any features that make a system
interactive – and many in this collection have such – do help in finding proofs
through experimentation.

Over about a decade I developed undergraduate courses using Mathemat-
ica. One effort was directed at Discrete Mathematics, and my colleague, Klaus
Sutner, at Carnegie Mellon has expanded that effort several fold with excellent
success. Most of my own thought went into a course on Projective Geometry,
basically an introduction to plane algebraic curves over the complex field. What
I found via the use of computer algebra was that theorems can be proved by
asking for simplifications and interaction between equations. Technically, I used
not just commutative algebra but also an implementation of the algebra of par-
tial differential operators acting on multivariate polynomials. The details are not
important, as the point was that the user of Mathematica had to enter the right
questions and control the choices of appropriate cases (say, after a factoriza-
tion of a polynomial) in order to reach the desired conclusions. In other words,
though there was automatic verification and generation of algebraic facts, there
is not a deductive facility built into Mathematica. And I wish there were! Some
very good progress has been made in the system, however, in simplifications of
logical formulae involving the equations and inequalities over the real field. But
welcome as this is, it is not general-purpose logical deduction.

Computer algebra systems have become very powerful and are used both
for applications (say, in computer-aided design of complicated surfaces) and in
research (say, in group theory, for example). But we have to note that though
effective, proofs are not generated. The user of the system has to believe that the
system is doing the simplifications correctly. Usually we are able to accept results
on faith, and we are happy to see what is discovered, but, strictly speaking, a
proof is lacking. For a wide-ranging discussion of such issues, the reader may
consult “A Skeptic’s Approach to Combining HOL and Maple” by John Harrison
and Laurent Théry, which appeared in the Journal of Automated Reasoning,
vol. 21 (1998), pp. 279–294. (This is also to be found on John Harrison’s WWW
page.)

So what we have here is a dilemma to be faced by implementors of proof
systems. On the one hand, interaction and experimentation can be considerably
speeded up by using automatic simplification of logical and algebraic expressions
– and one can hope even by rules that the user specifies himself. Alternately,
new methods for large-scale Boolean satisfaction algorithms might be employed.
On the other hand, for verification (either by humans or by another part of the
system), checkable proofs have to be generated and archived. Computers are so
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fast now that hundreds of pages of steps of simplifications can be recorded even
for simple problems. Hence, we are faced with the questions, “What really is a
proof?” and “How much detail is needed?” Several different answers are offered
by the systems surveyed here. But, is there a canonical answer that will satisfy
the test of time – and be relevant as new systems are put forward in the future?
And don’t forget that probabilistic proof procedures (say, for checking whether
a large number is prime) also involve the question of what constitutes a proof.

Large searches present another vexing block for understanding what a system
has accomplished. The original attack by computer on the Four Color Conjec-
ture is a case in point. As discussed in the introduction by Wiedijk, objections
have now been eliminated by showing that the method for generating the nec-
essary cases is correct, even though the total run of the program is not humanly
surveyable. On the other hand, as noted, work by Hales to eliminate criticisms
of his solution to Kepler’s Conjecture, though making progress, still continues.
Of course, there will always be people who will say that such computer calcu-
lations, no matter how well designed – and with verified design principles – do
not really give us proofs. They may even say, “How do you know that there
was not some quantum-mechanical glitch that threw the computer off?” Run-
ning the program again with the same results will not be convincing either. But,
what I think will silence the nay-sayers is the development of whole suites of
general-purpose programs for solving new problems. Not wishing to criticize the
work on Four Color Conjecture or on Kepler’s Conjecture, but it often seems
that a big effort is put into solving one single problem, and that’s it. When proof
assistants constitute a research tool that (suitably minded) mathematicians use
daily for work, then there will be recognition and acceptance. This has already
happened for computer-algebra systems and for chip-design verification systems.
I remain optimistic that we will sooner and not later see real progress with solid
mathematics proof systems.

But human imagination can always outstrip the capabilities of machines.
To bring this point home in a very clear way, I think that the two delightful
books by Roger B. Nelson, Proofs Without Words: Exercises in Visual Thinking
(1993) and Proofs Without Words II: More Exercises in Visual Thinking (2000),
published by The Mathematical Association of America, can give a deep fund of
examples and questions about how proofs can be formalized. In the books there
are, of course, many of the proofs of the Pythagorean Theorem, probably the
most proved theorem in mathematics. Two I especially like involve facts about
similar triangles: see proof VI on p. 8 of the first volume, and XI on p. 7 of the
second. Proofs like these involve augmenting the original figure by what are often
called “auxiliary lines”. I particularly hated this method of proof in geometry
when I first saw it in school. The teacher would introduce these constructions in
a way like a magician pulling a rabbit out of a hat. It did not seem fair to make
a hard problem easy, because there was little made obvious about where these
helpers came from. After a while, I learned to do this stuff myself, and then I
liked it. But training machines to do this is another question.
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A quite different method is given on p. 142 of the first book. The puzzle is
taken from the article by Guy David and Carlos Tomei, “The problem of the
calissons”, published in the American Mathematical Monthly, vol. 96 (1989),
pp. 429–431. A calisson is a French candy in the shape of two equilateral triangles
joined at an edge. The problem has to do with arrangements of these (as tiles)
in a hexagonal box. Thinking of a triangular grid in the plane, a calisson is the
appropriate “domino” for this grid. On the usual grid of squares, there are just
two orientations of a rectangular domino: vertical or horizontal. The triangular
grid allows three orientations, however. What David and Tomei remarked is
that when the different orientations are colored in three colors, the fact about
the balance of colors used becomes “obvious” – if the observer is used to optical
illusions.

It is amusing that the late Edsger W. Dijkstra in his handwritten, privately
circulated note, EWD 1055, of 5 July, 1989, strongly rejected this method of ar-
gument. He writes that they “give a very unsatisfactory treatment of the problem
... [and] come up with an elaborate non proof.” His note gives a rigorous proof,
but I think it is one that would need some effort to automate. (Dijkstra’s notes
can be downloaded over the Internet, by the way.)

N.G. de Bruijn has also written on this problem in a brief paper dating
initially from May 1989, which he circulated privately after 1994. In his note he
remarks:

The proof sketched [by David and Tomei] gives a very amusing intu-
itive argument, interpreting the box with calissons as a two-dimensional
drawing of a collection of unit cubes in three dimensions. In the present
note a more formal argument will be given, and a stronger result will be
obtained. For any box, hexagonal or not, it will be shown that if it can
be filled with calissons, then the number in each direction is uniquely
determined by the box. These numbers can be found if we just know
both the volume of the box and what we shall call the weight sum of the
box. Moreover it will be shown that this weight sum can be expressed as
a kind of discrete contour integral taken along the boundary of the box.

Indeed, Dijkstra proves the same result about each box determining the three
numbers of orientations. But, it may be that de Bruijn adds something addi-
tional about how the shape of the box gives these numbers. Dijkstra’s proof
seems more “combinatorial”, while de Bruijn’s is more “analytical”. But a closer
reading might show they had equivalent ideas. Another question these authors
may not have considered is the connections between the various tilings of a box.
In the simple case of a hexagonal box, the counting result might be proved by
“rewriting”. That is, the tiles in the different orientations might be driven to
different corners of the box by replacing, one after the other, a small hexagon
of three tiles by one of its rotations. And it might be that the space of tilings is
“path-wise connected” – in the discrete sense that one could pass from one to
the other by these elementary steps. For boxes of different shapes, it might be
another story.
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This puzzle is only one of many amusing tiling problems which show that
even simple combinatorial questions often require special techniques to automate
owing to the large number of possible configurations to be considered, as many
authors have remarked. In many cases, the solutions do not depend on general
theorems but require searches crafted solely for the particular problem. The
problem of the calissons may be an example in between; if so, it might be more
interesting to study than those requiring “brute force”. And all such examples
make us again ask: “What is a (good) proof?”

Note Added 22 May 2005

It was just brought to my attention that the late Stanley Tennenbaum told many
people about a proof of the irrationality of root 2 he discovered in the 1960’s. It
is of course possible that the proof has been noted often before, especially as it is
not so far from what is discussed above. However, it can be explained as a ‘proof
without words’ involving no calculations beyond what is seen in the figure.

Suppose a square with integral sides is equal in area to the combination of two,
smaller, congruent squares. Place the smaller squares inside the first square at
two diagonally opposite corners. The two squares will have to overlap (Why?),
making another square covered twice by them. But in the other corners there are
two much smaller squares left uncovered. Inasmuch as the areas were supposed
to add up, the two small squares must also add up to the central, overlapping
square. (Why?) But the sides of these three smaller squares are obtained by sub-
traction, and hence must have integral values. Hence, there can be no minimal,
integral configuration where the sum of two equal, integral squares adds up to
another integral square.

Dana S. Scott
<dana.scott@cs.cmu.edu>

University Professor Emeritus
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA



Preface

This volume is not a collection of papers but a collection of small formalizations.
These formalizations all formalize a proof of the same very small theorem: the
irrationality of the square root of two. After each formalization there is a de-
scription of the system used for that formalization, again not in the form of a
paper but in the form of answers to a standard ‘questionnaire’.

The systems shown in this volume are most of the systems that one should
consider if one is interested in the formalization of mathematics, as it is very
lucidly described in the QED manifesto. The purpose of this volume is not to find
out which system is ‘best’. The aims of the systems are too diverse to be easily
comparable in a linear fashion. Instead it tries to showcase all those systems, to
make clear what formalizations in all those systems look like. The main point of
the volume is that these systems can be very different.

I would like to thank all the people who wrote all these very interesting
formalizations. Also I would like to thank Dana Scott for his willingness to
write the Foreword for this volume. I would like to thank Henk Barendregt for
the concept of this collection. Finally I would like to thank Jörg Siekmann for
offering to have this volume published in the LNAI series, to commemorate the
50th anniversary of the first computer-checked proof.

October 2005 Freek Wiedijk




