“With these abundant beacons, the banishment of snags, plenty of daylight ir
box and ready to be turned on whenever needed, and a chart and compass to
the fog, piloting, at a good stage of water, is now nearly as safe and simpe as d
ing stage, and it is hardly more than three times as romantic.”

Mark Twain, Life on the Mississippi

Preface

Researchers in Artificial Intelligence have traditionally been classified into two
categories: the “neaties” and the “scruffies”. According to the scruffies, the neaties
concentrate on building elegant formal frameworks, whose properties are beautifully
expressed by means of definitions, lemmas, and theorems, but which are of little or no
use when tackling real-world problems. The scruffies are described (by the neaties) as
those researchers who build superficially impressive systems that may perform
extremely well on one particular case study, but whose properties and underlying
theories are hidden in their implementation, if they exist at all.

As a life-long, non-card-carrying scrufty, I was naturally a bit suspicious when I first
started collaborating with Dieter Fensel, whose work bears all the formal hallmarks of
a true neaty. Even more alarming, his primary research goal was to provide sound,
formal foundations to the area of knowledge-based systems, a traditional stronghold of
the scruffies - one of whom had famously declared it “an art”, thus attempting to place
it outside the range of the neaties (and to a large extent succeeding in doing so).
However, even an unreconstructed scruffy such as myself can recognize a good neaty
when he comes across one. What Dieter has managed to produce with his research on
problem solving methods is what all neaties hope to do, but few achieve: a rigorous
and useful theory, which can be used analytically, to explain a range of phenomena in
the (real) world and synthetically, to support the development of robust and well
defined artifacts.

Specifically, this book provides a theory, a formal language and a practical
methodology to support the specification, use, and reuse of problem solving methods.
Thus, knowledge engineering is not characterized as an art any longer, but as an
engineering discipline, where artifacts are constructed out of reusable components,
according to well-understood, robust development methods. The value of the
framework proposed by Dieter is illustrated extensively, by showing its application to
complex knowledge engineering tasks - e.g., diagnosis and design - and by applying it
to the specification of libraries with both scope and depth (i.e., both usable and
reusable). Another important contribution of this book is that it clarifies the similarities
and the differences between knowledge-based and 'conventional' systems. The
framework proposed by Dieter characterizes knowledge-based systems as a particular
type of software architecture, where applications are developed by integrating generic
task specifications, problem solving methods, and domain models by means of
formally defined adapters. The latter can be used to map the terminologies used by the
different system components, and also to formally introduce the assumptions on the
domain knowledge required by an intelligent problem solver. This notion of
assumption is central to Dieter's characterization of knowledge-based systems: these
are defined as systems that make assumptions for the sake of efficiency. Thus, Dieter
is able to build a continuum of assumption-making systems, ranging from “weak”
search methods to “strong”, task-specific methods. As a result we can now see clearly
the relationship between all these various classes of algorithms, which have
traditionally been treated as distinct.

VIl Preface

In conclusion, I believe this is the first 'real' theory of knowledge engineering to come
out of several decades of research in this area. It describes the class of systems we are
talking about, how to model them and how to develop them. I also believe that it is
very important that this theory has come out at a time when the explosion of internet-
based services is going to provide unprecedented opportunities for deploying and
sharing knowledge-based services. I advise anybody who plans to be a player in this
area to read this book and learn what robust knowledge engineering is about.

January 2000 Enrico Motta

Acknowledgments

First of all, I would like to thank Rudi Studer for providing me with the possibilities to
continue my research after my Ph.D. in 1993. He always stimulated my research and
encouraged me to relate my work to the international state of the art. He showed great
patience and provided the degree of freedom necessary for a creative atmosphere.

In the last few years I have cooperated intensively with a number of colleagues who I
would like to thank at this point. During my guest stay at the University of Amsterdam
I profited much from cooperating with Richard Benjamins, Remco Straatman, Frank
van Harmelen, Annette ten Teije, and Bob Wielinga in getting a better understanding
of what problem-solving methods for knowledge-based systems are about. Putting this
understanding into a software engineering flavoured framework and formulas of
modal logic would not have been possible without the cooperation with Rix
Groenboom and Gerard Renardel de Lavalette!) from the University of Groningen, a
small town in the North of The Netherlands with highly skilled researchers. Back in
Karlsruhe I worked on realizing a verification framework for knowledge-based
systems that took into account the ideas I collected and developed abroad. I found an
excellent tool environment KIV and the helping hand of Arno Schonegge whenever
the task exceeded my limited skills in mathematical proof techniques. Discussions
with him and Wolfgang Reif (University of Ulm) provided many fruitful ideas on how
to provide a development framework for problem-solving methods. Finally it was the
cooperation with Enrico Motta from the Open University in England which allowed
me to ground my ideas with an existing library of problem-solving methods dealing
with real-world problems. In addition to these key players there were also a lot of
colleagues from different places who provided me with helpful hints and new insights.
So I would like to thank Joost Breuker (University of Amsterdam), Stefan Decker
(University of Karlsruhe), Joeri Engelfriet (Vrije Universiteit Amsterdam), Pascal van
Eck (Vrije Universiteit Amsterdam), Gertjan van Heijst (CIBIT, The Netherlands),
Yde Venema (Vrije Universiteit Amsterdam), Marc Willems (Vrije Universiteit
Amsterdam), and Zdenek Zrdahal (Open University in Milton Keyens, England) for
helpful discussions and contributions. Shame on me for all the further names I do not
mention. However, I should not forget Jeffrey Butler who carried out the Sisyphus-VI
project of improving mein English.

Clearly, my thanks are also devoted to Estela who kept life going on watching my back
in front of a computer.

D The mathematical theory and knowledge underlying MCL (see Chapter 4) is contributed by
him.

Introduction

Knowledge-based systems are computer systems that deal with complex problems by
making use of knowledge.l) This knowledge may be acquired from humans or
automatically derived with abductive, deductive, and inductive techniques. This
knowledge is mainly represented declaratively rather than encoded using complex
algorithms. This declarative representation of knowledge economizes the development
and maintenance process of these systems and improves their understandability.
Therefore, knowledge-based systems originally used simple and generic inference
mechanisms to infer outputs for provided cases. Inference engines, like unification,
forward or backward resolution, and inheritance, covered the dynamic part of deriving
new information. However, human experts can exploit knowledge about the dynamics
of the problem-solving process and such knowledge is required to enable problem-
solving in practice and not only in principle. [Clancey, 1983] provided several
examples where knowledge engineers implicitly encoded control knowledge by
ordering production rules and premises of these rules, which together with the generic
inference engine, delivered the desired dynamic behavior. Making this knowledge
explicit and regarding it as an important part of the entire knowledge contained by a
knowledge-based system is the rationale that underlies problem-solving methods.
Problem-solving methods refine the generic inference engines mentioned above to
allow a more direct control of the reasoning process. Problem-solving methods
describe this control knowledge independent from the application domain thus
enabling reuse of this strategical knowledge for different domains and applications.
Finally, problem-solving methods abstract from a specific representation formalism in
contrast to the general inference engines that rely on a specific representation of the
knowledge.

Problem-solving methods enable the reuse of reasoning knowledge. [Clancey, 1985]
reported on the analysis of a set of first generation expert systems developed to solve
different tasks. Though they were realized using different representation formalisms
(e.g. production rules, frames, LISP) and applied in different domains, he discovered a
common problem solving behavior. Clancey was able to abstract this common
behavior to a generic inference pattern called heuristic classification, which describes
the problem-solving behavior of these systems on an abstract level (cf. [Newell,
1982]). When considering the problem-solving method heuristic classification in some
more detail (see Fig.) we can identify the three basic inference actions abstract,
heuristic match, and refine. Furthermore, four knowledge roles are defined:
observables, abstract observables, solution abstractions, and solutions. It is important
to see that such a description of a problem-solving method is given in a generic way.
Thus the reuse of such a problem-solving method in different domains is made
possible.

1 A good introduction to the field is provided by [Stefik, 1995]. However, the horizont of this
book ends at the American borders and we would also very much like to recommend the reader
the textbook on CommonKADS [Schreiber, 1999]. A survey on the state of the art can be found
in [Studer et al., 1998].

Dieter Fensel: Problem-Solving Methods, LNAI 1791, pp. 1-4, 2000.
© Springer-Verlag Berlin Heidelberg 2000

2 Introduction

In the meantime various problem-solving methods have been identified and the
concept problem-solving method is present in a large number of current knowledge-
engineering frameworks (e.g. GENERIC TASKS [Chandrasekaran, 1986]; ROLE-
LIMITING METHODS [Marcus, 1988], [Puppe, 1993]; KADS [Schreiber et al.,
1993] and CommonKADS [Schreiber et al., 1994]; the METHOD-TO-TASK
approach [Eriksson et al., 1995]; COMPONENTS OF EXPERTISE [Steels, 1990];
GDM [Terpstra et al., 1993]; MIKE [Angele et al., 1998]). Libraries of problem-
solving methods are described in [Benjamins, 1995], [Breuker & Van de Velde, 1994],
[Chandrasekaran et al., 1992], [Motta & Zdrahal, 1996], and [Puppe, 1993]. In general
a problem-solving method describes which reasoning steps and which types of
knowledge are needed to perform a task. This description should be domain and
implementation independent. Problem solving methods are used in a number of ways
in these frameworks (see e.g. [Chandrasekaran et al., 1992]): as a guideline for
acquiring problem-solving knowledge from an expert, as a guideline for decomposing
complex tasks into subtasks, as a description of the essence of the reasoning process of
the expert and knowledge-based system, as a skeletal description of the design model
of the knowledge-based system, and as a means to enable flexible reasoning by
selecting methods during problem solving.

Given this amount of literature the reader may ask why there should be a need for
another volume on this subject. The motivation for this volume stems from an analysis
of the problem-solving method propose & revise and its application to the
configuration of a vertical transportation system (VT-domain, cf. [Marcus et al.,
1988], [Schreiber & Birmingham, 1996]). This example was used by several research
groups in knowledge engineering as a common case study. The solution in which we
participated is reported in [Poeck et al., 1996]. In [Fensel, 1995a], we analysed our

abstract solution
observables abstractions

[solutions |

) inference action |:| role
- /

Fig. 1. The Problem-Solving Methdtkuristic classification

Introduction 3

solution in more depth having the goal of deriving a precise and reusable specification
of propose & revise. However, we encountered a number of difficulties. First, propose
& revise makes a great number of very strong assumptions for solving the given
configuration problem. Different variants of propose & revise can be identified
according to the precise definition of these assumptions. These assumptions influence
the definition of elementary inferences as well as the control and competence of the
method. In fact, the competence of the method can only be defined in terms of the
underlying assumptions. Some of the assumptions we encountered are rather strong
and as showed by [Zdrahal & Motta, 1995], they are not always fulfilled in the VT-
domain [Yost & Rothenfluh, 1996]. In consequence, we identified three aspects that
require some deeper mining as a precondition to providing reusable problem-solving
methods and seriously considering libraries of them.?)

(i) What is the rationale and the role of the numerous assumptions we encountered
when taking a closer look at propose & revise? Do they imply that propose &
revise is a strange and poorly designed method or is there some more deeper
rationale for introducing them?

(il)) We felt the need to give assumptions a much more prominent role when
describing a problem-solving method. They characterize the conditions under
which a method can be applied to a domain and a task and are necessary for
understanding most of the inferences of a method. Existing work on problem-
solving methods only treated them as a side aspect. KADS-like inference and
task structures [Schreiber et al., 1994] focus on an operational description of the
method. However, for successful reuse of methods it seems much more
important to establish a notation that describes a method in terms of
assumptions and the competence as a consequence of these assumptions. The
operational description is in that sense only an explanation of how the
competence can be achieved by making use of the underlying assumptions.

(iii) In[Fensel, 1995a] we identified numerous variations of propose & revise. None
of them could be determined to be the gold standard of this method. Therefore,
hardwiring all assumptions of one variant in a specific operational description
with a fixed competence may lead to non-reusable problem-solving methods.
Actually, this was the experiences of many shell developers who derived shells
from some applications and encountered serious problems when trying to apply
it to new and slightly different tasks and domains. Putting all possible variants
of propose & revise into the library also does not look very promising given the
large number of different variants. Propose & revise is only one method.
Applying this strategy to all problem-solving methods would result in a nearly
infinitely large library. In consequence, there seems to be only one reasonable
strategy: (1) Identifying generic patterns from which the numerous variants can
be derived by adaptation and (2) providing support for this adaptation process.

These three aspects already roughly summarize the content of this volume which—not
surprisingly—consist of three sections. In the following, we will briefly sketch each
section.

2) Providing a library of problem-solving methods was the initial goal of the research project.

4 Introduction

What Are Problem-Solving Methods: Reasoning Strategies that Gain Efficiency
through Assumptions. Section 1 deals with the question why problem-solving
methods have to introduce assumptions and why this is not a bug but a feature. We
discuss this perspective in Chapter 1 and continue in Chapter 2 with an empirical
survey of assumptions used in model-based diagnosis to ground our argument.

How Can Problem-Solving Methods Be Described: With a Software
Architecture, MCL, and KIV. The structured development of problem-solving
methods requires a structured framework to describe them. This is the subject of
Section II. In Chapter 3, we provide a software architecture for describing knowledge-
based systems focusing on the problem-solving method and its related parts. KADS-
like operational specifications are supplemented by describing the competence and
assumptions of a method and using adapters to relate them to the task and domain. “A
specification can provide a way of making explicit those assumptions which are
otherwise hidden consequences of an algorithm.* [Jones, 1990] Chapter 4 investigates
the requirements of a logical framework for formalizing problem-solving methods and
presents the two logics MLPM [Fensel & Groenboom, 1996] and MCL [Fensel et al.,
1998 (c)] which both integrate the specification of dynamics in a declarative
framework. Chapter 5 provides a framework for verifying such architectural
specifications of knowledge-based systems. It is based on the Karlsruhe Interactive
Verifier (KIV) [Reif, 1995] which shifts verification from a task that can be done in
principle to a task that can be done in practice. KIV can be used to establish the
competence of a problem-solving method given some assumptions or to find the
assumptions that are required to achieve such a competence. The latter aspect is
discussed in Chapter 6.1 as inverse verification.

How Can Problem-Solving Methods Be Developed and Reused: By Stapling
Adapters and Hunting for Assumptions with Inverse Verification. Section 111
provides the means for the structured development and reuse of problem-solving
methods. Chapter 6 discusses the context dependency of knowledge which arises as a
problem when trying to reuse it. We provide two methods that deal with this problem.
We discuss a method called inverse verification to support the explication of context
and adapters to support the adaptation to a new context (i.e., domain or task). Chapter
7 uses this principle to describe a library of methods for solving design problems. This
methods library was developed at the Knowledge Media Institut (cf. [Motta & Zdrahal,
1996], [Motta, 1999]) and used in several applications3). We identify a small number
of key patterns and derive all possible variants of problem-solving methods through a
navigation process in a three dimensional space. The organizational principles for this
library provide a solution for dealing with all the different variants of problem-solving
methods: a small number of generic patterns and support in their adaptation.

3) Office allocation problem, elevator design, sliding bearing design, problems of simple
mechanics, initial vehicle (truck) design, design and selection of casting technologies, and sheet
metal forming technology for manufacturing mechanical parts [Motta, 1999].

