
CHAPTER 4

Core Swing Components

IN CHAPTER 3, WE EXPLORED THE Model-View-Controller pat-
tern used by the components of the JFC/Swing project. In
this chapter, we’ll begin to explore how to use the key parts
of the many available components.

All Swing components start with the JComponent class.
Although some parts of the Swing libraries aren’t rooted
with the JComponent class, all the components share
JComponent as the common parent class at some level of
their ancestry. It’s with this JComponent class that common
behavior and properties are defined. In this chapter, we
look at common functionality such as component painting,
customization, tooltips, and sizing.

As far as specific JComponent descendent classes are con-
cerned, we’ll look at the JLabel, JButton, and JPanel, three of
the more commonly used Swing component classes. They
require understanding of the Icon interface for displaying
images within components, as well as of the ImageIcon class
for when using predefined images and the GrayFilter class
for support. In addition, we’ll look at the AbstractButton
class, which serves as the parent class to the JButton. The
data model shared by all AbstractButton subclasses is the
ButtonModel interface; we’ll look at that and the specific
implementation class, the DefaultButtonModel.

Class JComponent

The JComponent class serves as the abstract root class from
which all Swing components descend. The JComponent
class has 39 descendent subclasses, each of which inher-
its much of the JComponent functionality. Figure 4-1 shows
this hierarchy.

Although the JComponent class serves as the common
root class for all Swing components, many classes in the
libraries for the Swing project descend from classes other
than JComponent. Those include all the high-level container

77

Figure 4-1: JComponent class
hierarchy diagram

820.5281_CH04 10/6/00 2:35 PM Page 77

objects such as JFrame, JApplet, and JInternalFrame, as well as Box, all the Model-
View-Controller (MVC)-related classes, event-handling–related interfaces and
classes, and much more. All of these will be discussed in later chapters.

Although all Swing components extend JComponent, the JComponent class
extends the AWT Container class, which in turn extends from the AWT Component
class. This means that many aspects of the JComponent are shared with both the
AWT Component and Container classes.

NOTE JComponent extends from the Container class, but most of the
JComponent subclasses aren’t themselves containers of other components.
To see if a particular Swing component is truly a container, check the
bean info for the class to see if the isContainer property is set to true. To
get the BeanInfo for a class, ask the Introspector.

Component Pieces

The JComponent class defines many aspects of AWT components that go above
and beyond the capabilities of the original AWT component set. This includes
customized painting behavior and the several different ways to customize dis-
play settings, such as colors, fonts, and any other client-side settings.

Painting JComponent Objects

Because the Swing JComponent class extends from the Container class, the basic
AWT painting model is followed: All painting is done through the paint()
method, and the repaint() method is used to trigger updates. However, many
tasks are done differently. The JComponent class optimizes many aspects of paint-
ing for improved performance and extensibility. In addition, the RepaintManager
class is available to customize painting behavior even further.

NOTE The public void update(Graphics g) method, inherited from
Component, is never invoked on Swing components.

To improve painting performance and extensibility, the JComponent splits the paint-
ing operation into three tasks. The public void paint(Graphics g) method is
subdivided into three separate (protected) method calls. In the order called, they
are paintComponent(g), paintBorder(g), paintChildren(g), with the Graphics argument

Chapter 4

78

820.5281_CH04 10/6/00 2:35 PM Page 78

passed through from the original paint() call. The component itself is first painted
through paintComponent(g). If you want to customize the painting of a Swing com-
ponent, you override paintComponent() instead of paint(). Unless you want to
completely replace all the painting, you would call super.paintComponent() first, as
shown here, to get the default paintComponent() behavior.

public class MyComponent extends JPanel {

protected void paintComponent(Graphics g) {

super.paintComponent(g);

// customize after calling super.paintComponent(g)

}

...

}

NOTE When running a program that uses Swing components within the
Java 2 platform, the Graphics argument passed to the paint() method and
on to paintComponent() is technically a Graphics2D argument. Therefore,
after casting the Graphics argument to a Graphics2D object, you could use
the Java2D capabilities of the Java 2 platform, as you would when defin-
ing a drawing Stroke, Shape, or AffineTransform.

The paintBorder() and paintChildren() methods tend not to be overridden. The
paintBorder() method draws a border around the component, a concept described
more fully in Chapter 7. The paintChildren() method draws the components
within the Swing container object, if any are present.

To optimize painting, the JComponent class provides three additional painting
properties: opacity, optimization, and double buffering.

The opacity setting for a JComponent defines whether a component is trans-
parent. When transparent, the container of the JComponent must paint the
background behind the component. To improve performance, you can leave the
JComponent opaque and let the JComponent draw its own background, instead of
relying on the container to draw the covered background.

The optimization setting determines whether immediate children can over-
lap or not. If children can’t overlap, the repaint time is reduced considerably. By
default, optimized drawing is enabled for most Swing components, except for
JDesktopPane, JLayeredPane, and JViewport.

By default, all Swing components double buffer their drawing operations
into a buffer shared by the complete container hierarchy, that is, all the compo-
nents within a window (or subclass). This greatly improves painting
performance, because when double buffering is enabled there is only a single
screen update drawn.

Core Swing Components

79

820.5281_CH04 10/6/00 2:35 PM Page 79

NOTE For synchronous painting, you can call one of the public void
paintImmediately() methods. (Arguments are either a Rectangle or its
parts — position and dimensions.) However, you’ll rarely need to call this
directly unless your program has real-time painting requirements.

The public void revalidate() method of JComponent also offers painting support.
When called, the high-level container of the component validates itself. This is
unlike the AWT approach requiring a direct call to the revalidate() method of
that high-level component.

The last aspect of the Swing component painting enhancements is the
RepaintManager.

Class RepaintManager

The RepaintManager is responsible for ensuring the efficiency of repaint requests
on the currently displayed Swing components, making sure the smallest “dirty”
region of the screen is updated when a region becomes invalid.

Although rarely customized, the RepaintManager class is public and provides a
static installation routine to use a custom manager: public static void
setCurrentManager(RepaintManager manager).

To get the current manager, just ask with public static void
currentManager(JComponent). The argument is usually null, unless you’ve cus-
tomized the manager to provide component-level support. Once you have the
manager, one thing you can do is get the offscreen buffer for a component as an
Image. Because the buffer is what is eventually shown on the screen, this effectively
allows you to do a screen dump of the inside of a window (or any JComponent).

RepaintManager manager = RepaintManager.currentManager(null);

Image htmlImage = manager.getOffscreenBuffer(comp, comp.getWidth(), comp.getHeight());

Table 4-1 shows the two properties of RepaintManager. They allow you to dis-
able double buffering for all drawing operations of a component (hierarchy)
and to set the maximum double buffer size, which defaults to the end user’s
screen size.

PROPERTY NAME DATA TYPE ACCESS

doubleBufferingEnabled boolean read-write

doubleBufferMaximumSize Dimension read-write

Table 4-1: RepaintManager properties

Chapter 4

80

820.5281_CH04 10/6/00 2:35 PM Page 80

TIP To globally disable double-buffered drawing, call the following:
RepaintManager.currentManager(aComponent).

setDoubleBufferingEnabled(false).

Although it’s rarely done, providing your own RepaintManager subclass does allow
you to customize the mechanism of painting dirty regions of the screen, or at
least track when they’re done. The mechanisms can be customized by overriding
any of the following four methods:

public synchronized void addDirtyRegion(JComponent component, int x, int y, int

width, int height)

public Rectangle getDirtyRegion(JComponent component)

public void markCompletelyClean(JComponent component)

public void markCompletelyDirty(JComponent component)

Class UIDefaults

The UIDefaults represents a lookup table containing the display settings installed
for the current look and feel, such as which font to use within a JList, as well as
what color or icon should be displayed within a JTree node. The use of UIDefaults
will be completely described in Chapter 18 with the coverage of Java’s pluggable
look and feel architecture. Nevertheless, a short description of its usage is
needed here.

Whenever you create a component, the component automatically asks the
UIManager to look in the UIDefaults settings for the current settings for that com-
ponent. Most color- and font-related component settings, as well as some others
not related to colors and fonts, are configurable. If you don’t like a particular set-
ting, you can simply change it.

NOTE All predefined resource settings in the UIDefaults table implement
the UIResource interface, which allows the components to monitor which
settings have been customized just by looking for those settings that don’t
implement the interface.

You can find the listed settings in either one of two places in this book. Appendix
A contains a complete alphabetical listing of all known settings for the prede-
fined look-and-feels. In addition, included with the description of each
component is a table containing the UIResource-related property elements. (To
find the specific component section in the book, consult the Index.)

Core Swing Components

81

820.5281_CH04 10/6/00 2:35 PM Page 81

Once you know the name of a setting, you can store a new setting with the
public static void put(Object key, Object value) method of UIManager, where
key is the key string. For instance, the following code will change the default back-
ground color of newly created buttons to black and the foreground color to red:

UIManager.put("Button.background", Color.black);

UIManager.put("Button.foreground", Color.red);

If you’re creating your own components or just need to find out the current value
setting, you need only ask the UIManager. Although the public static Object
get(Object key) method is the most generic, it requires you to cast the return
value to the appropriate class type. Alternately, you could use one of the more
specific getXXX() methods, which does the casting for you, to return the appro-
priate type. Those methods are listed in Table 4-2.

UIMANAGER GETTER METHODS

public static Border getBorder(Object key)

public static Color getColor(Object key)

public static Dimension getDimension(Object key)

public static Font getFont(Object key)

public static Icon getIcon(Object key)

public static Insets getInsets(Object key)

public static int getInt(Object key)

public static String getString(Object key)

public static ComponentUI getUI(JComponent target)

Table 4-2: UIManager methods for getting UIResource properties

NOTE You can also work with the UIDefaults directly, by calling the pub-
lic static UIDefaults getDefaults() method of UIManager.

Client Properties

In addition to the UIManager maintaining a table of key-value pair settings, each
instance of every component can manage its own set of key-value pairs. This is
useful for maintaining aspects of a component that may be specific to a particu-
lar look and feel, or for maintaining data associated with a component without
requiring the definition of new classes or methods to store such data.

Chapter 4

82

820.5281_CH04 10/6/00 2:35 PM Page 82

public final void putClientProperty(Object key, Object value)

public final Object getClientProperty(Object key)

NOTE Calling putClientProperty() with a value of null causes the key to
be removed from the client property table.

For instance, the JTree class has a property with the Metal look and feel for con-
figuring the line style for connecting or displaying nodes within a JTree. Because
the setting is specific to one look and feel, it doesn’t make sense to add some-
thing to the tree API. Instead, the property can be set by calling the following on
a particular tree instance:

tree.putClientProperty("JTree.lineStyle", "Angled")

Then, when the look and feel is the default Metal, lines
will connect the nodes of the tree. If another look and feel
is installed, the client property will be ignored.

Figure 4-2 shows a tree with and without lines.

NOTE The list of client properties is probably one of
the least documented aspects of Swing. Chapter 18
lists the available properties I was able to determine.

JComponent Properties

You’ve seen some of the pieces shared by the different JComponent subclasses.
Now it’s time to look at the JavaBeans properties. Table 4-3 shows the complete
list of properties defined by JComponent, including those inherited through the
AWT Container and Component classes.

Core Swing Components

83

Figure 4-2: A JTree, with and without
angled lines

JCOMPONENT CONTAINER COMPONENT

PROPERTY NAME DATA TYPE ACCESS ACCESS ACCESS

accessibleContext AccessibleContext read-only N/A read-only

actionMap ActionMap read-write N/A N/A

alignmentX float read-write read-only read-only

alignmentY float read-write read-only read-only

autoscrolls boolean read-write N/A N/A

(continued)

820.5281_CH04 10/6/00 2:35 PM Page 83

Chapter 4

84

JCOMPONENT CONTAINER COMPONENT

PROPERTY NAME DATA TYPE ACCESS ACCESS ACCESS

background Color write-only bound N/A read-write bound

border Border read-write bound N/A N/A

bounds Rectangle N/A N/A read-write

colorModel ColorModel N/A N/A read-only

componentCount int N/A read-only N/A

componentOrientation ComponentOrientation N/A N/A read-write bound

components Component[] N/A read-only N/A

cursor Cursor N/A N/A read-write

debugGraphicsOption int read-write N/A N/A

displayable boolean N/A N/A read-only

doubleBuffered boolean read-write N/A read-only

dropTarget DropTarget N/A N/A read-write

enabled boolean write-only bound N/A read-write

focusCycleRoot boolean read-only N/A N/A

focusTraversable boolean read-only N/A read-only

font Font write-only bound write-only read-write bound

foreground Color write-only bound N/A read-write bound

graphics Graphics read-only N/A read-only

graphicsConfiguration GraphicsConfiguration N/A N/A read-only

height int read-only N/A read-only

inputContext InputContext N/A N/A read-only

inputMap InputMap read-only N/A N/A

inputMethodRequests InputMethodRequests N/A N/A read-only

inputVerifier InputVerifier read-write N/A N/A

insets Insets read-only read-only N/A

layout LayoutManager N/A read-write N/A

lightweight boolean N/A N/A read-only

locale Locale N/A N/A read-write

location Point N/A N/A read-write

locationOnScreen Point N/A N/A read-only

managingFocus boolean read-only N/A N/A

maximumSize Dimension read-write bound read-only read-only

maximumSizeSet boolean read-only N/A N/A

Table 4-3 (continued)

(continued)

820.5281_CH04 10/6/00 2:35 PM Page 84

NOTE Additionally, there’s a read-only class property defined at the
Object level, the parent of the Component class.

Including the properties from the parent hierarchy, approximately 65 properties
of JComponent exist. As that number indicates, the JComponent class is extremely

Core Swing Components

85

JCOMPONENT CONTAINER COMPONENT

PROPERTY NAME DATA TYPE ACCESS ACCESS ACCESS

minimumSize Dimension read-write bound read-only read-only

minimumSizeSet boolean read-only N/A N/A

name String N/A N/A read-write

nextFocusableComponent Component read-write N/A N/A

opaque boolean read-write bound N/A read-only

optimizedDrawingEnabled boolean read-only N/A N/A

paintingTile boolean read-only N/A N/A

parent Container N/A N/A read-only

preferredSize Dimension read-write bound read-only read-only

preferredSizeSet boolean read-only N/A N/A

registeredKeyStrokes KeyStroke[] read-only N/A N/A

requestFocusEnabled boolean read-write N/A N/A

rootPane JRootPane read-only N/A N/A

showing boolean N/A N/A read-only

size Dimension N/A N/A read-write

toolkit Toolkit N/A N/A read-only

toolTipText String read-write N/A N/A

topLevelAncestor Container read-only N/A N/A

treeLock Object N/A N/A read-only

UIClassID String read-only N/A N/A

valid boolean N/A N/A read-only

validateRoot boolean read-only N/A N/A

verifyInputWhenFocusTarget boolean read-write N/A N/A

visible boolean write-only N/A read-write

visibleRect Rectangle read-only N/A N/A

width int read-only N/A read-only

x int read-only N/A read-only

y int read-only N/A read-only

Table 4-3: JComponent properties

Table 4-3 (continued)

820.5281_CH04 10/6/00 2:35 PM Page 85

well oriented for visual development. There are roughly eight categories of
JComponent properties, which are summarized as follows:

• Position-oriented properties — The x and y properties define the location of
the component relative to its parent. The locationOnScreen is just another
location for component, this time relative to the screen’s origin (upper-left
corner). The width and height properties define the size of the component.
The visibleRect describes the part of the component visible within the
topLevelAncestor, whereas the bounds property defines the component’s
area, whether visible or not.

• Component-set oriented properties — The components and componentCount
properties enable you to find out what the children components are of the
particular JComponent. For each component in the components property array,
the current component would be its parent. In addition to determining a
component’s parent, you can find out its rootPane or topLevelAncestor.

• Focus-oriented properties—The managingFocus, focusCycleRoot,
focusTraversable, nextFocusableComponent, requestFocusEnabled,

verifyInputWhenFocusTarget, and inputVerifier properties define the set of
focus-oriented properties. These properties control the focus behavior of
JComponent and were discussed in greater depth in Chapter 2.

• Layout-oriented properties—alignmentX, alignmentY, componentOrientation,
layout, maximumSize, minimumSize, preferredSize, maximumSizeSet,
minimumSizeSet, and preferredSizeSet are used to help with layout
management.

• Painting support properties — The background/foreground properties
describe the current drawing colors and font describes the text style to
draw. The insets and border properties are intermixed to describe the
drawing of a border around a component. The graphics property permits
real-time drawing, although the paintImmediately() method might now
suffice. To improve performance, there are the opaque (false is transpar-
ent), doubleBuffered, and optimizedDrawingEnabled properties. The
graphicsConfiguration adds support for virtual devices. For
debugGraphicsOption, this allows you to slow down the drawing of your
component if you can’t figure out why it’s not painted properly. The
remaining two, colorModel and paintingTile, store intermediate drawing
information.

The debugGraphicsOption property is set to one or more of the settings
in Table 4-4. Multiple settings would be combined with the bitwise OR
(“|”) operator.

Chapter 4

86

820.5281_CH04 10/6/00 2:35 PM Page 86

JComponent component = new ...();

component.setDebugGraphicsOptions(DebugGraphics.BUFFERED_OPTION |

DebugGraphics.FLASH_OPTION | DebugGraphics.LOG_OPTION);

DEBUGGRAPHICS SETTINGS DESCRIPTION

DebugGraphics.BUFFERED_OPTION Causes window to pop up, displaying the

drawing of the double-buffered image

DebugGraphics.FLASH_OPTION Causes the drawing to be done more

slowly, flashing between steps

DebugGraphics.LOG_OPTION Causes a message to be printed to the

screen as each step is done

DebugGraphics.NONE_OPTION Disables all options

Table 4-4: DebugGraphics settings

• Internationalization support — The inputContext, inputMethodRequests, and
locale properties help when creating multilingual operations.

• State support — To get state information about a component, all you have
to do is ask; there’s much you can discover. The autoscrolls property lets
you place a component within a JViewport and it automatically scrolls
when dragged. The validateRoot property is used when revalidate() has
been called and returns true when the current component is at the point it
should stop. The remaining seven properties are self-explanatory: dis-
playable, dropTarget, enabled, lightweight, showing, valid, and visible.

• The rest — The remaining properties don’t seem to have any kind of logical
grouping. The accessibleContext property is for support with the
javax.accessibility package. The registeredKeyStrokes, inputMap, and
actionMap properties allows you to register keystroke responses with a win-
dow. The cursor property lets you change the cursor to one of the available
cursors. The toolTipText property is set to display pop-up support text
over a component. The toolkit property encapsulates platform-specific
behaviors for accessing system resources. The name property gives you the
means to recognize a particular instance of a class. The treelock property
is the component tree-synchronization locking resource. The UIClassID
property is new; it allows subclasses to return the appropriate class ID for
their specific instance.

Core Swing Components

87

820.5281_CH04 10/6/00 2:35 PM Page 87

Handling JComponent Events

Three event-handling capabilities are shared by all JComponent subclasses. We’ll look
at these shared capabilities as well as review the ones inherited from Component.

Listening to JComponent Events with a PropertyChangeListener

The JComponent class makes several component properties bound. By binding a
PropertyChangeListener to the component, you can listen for particular
JComponent property changes and then respond accordingly.

public interface PropertyChangeListener extends EventListener {

public void propertyChange(PropertyChangeEvent propertyChangeEvent);

}

To demonstrate, the following PropertyChangeListener was pulled from the
Action class definition. The property that changes determines which if-block
gets executed.

public class ActionChangedListener implements PropertyChangeListener {

public void propertyChange(PropertyChangeEvent e) {

String propertyName = e.getPropertyName();

if (e.getPropertyName().equals(Action.NAME)) {

String text = (String) e.getNewValue();

button.setText(text);

button.repaint();

} else if (propertyName.equals("enabled")) {

Boolean enabledState = (Boolean) e.getNewValue();

button.setEnabled(enabledState.booleanValue());

button.repaint();

} else if (e.getPropertyName().equals(Action.SMALL_ICON)) {

Icon icon = (Icon) e.getNewValue();

button.setIcon(icon);

button.invalidate();

button.repaint();

}

}

}

Chapter 4

88

820.5281_CH04 10/6/00 2:35 PM Page 88

For property change support with the JComponent class, no class constants exist
for the property names. (An instance of a constant existing is Action.SMALL_ICON
in the Action class example just listed.) Instead, the class uses hard-coded String
constants. These strings are listed in Table 4-5.

PROPERTY CHANGE SETTING

ancestor

background

border

enabled

font

foreground

maximumSize

minimumSize

opaque

preferredSize

UI

Table 4-5: JComponent PropertyChangeListener support constants

NOTE With the Java 2 platform, some bound properties of JComponent
aren’t notified by JComponent directly. Instead, JComponent relies on its
superclass Component to do the notification because some properties of
Component, such as foreground color, aren’t bound with JDK 1.1 but are
bound with the Java 2 SDK.

The bound UI property is a protected property overridden by each of the
JComponent subclasses.

The ancestor property name is used when the parent of the component is
updated whenever the addNotify() / removeNotify() methods are called.

NOTE You can now bind a PropertyChangeListener to a specific property
by adding the listener with addPropertyChangeListener(String
propertyName, PropertyChangeListener listener). This allows your lis-
tener to avoid having to check for the specific property that changed.

Core Swing Components

89

820.5281_CH04 10/6/00 2:35 PM Page 89

Listening to JComponent Events with a VetoableChangeListener

The VetoableChangeListener is another JavaBeans listener that Swing components
use. It works with constrained properties, whereas the PropertyChangeListener
works with only bound properties. A key difference between the two is that the
public void vetoableChange(PropertyChangeEvent propertyChangeEvent) method
can throw a PropertyVetoException if the listener doesn’t like the requested change.

public interface VetoableChangeListener extends EventListener {

public void vetoableChange(PropertyChangeEvent propertyChangeEvent) throws

PropertyVetoException;

}

NOTE Only one class, JInternalFrame, has constrained properties. The lis-
tener is meant primarily for programmers to use with their own newly
created components.

Listening to JComponent Events with an AncestorListener

You can use an AncestorListener to find out when a component moves, is made
visible, or is made invisible. It’s useful if you permit your users to customize their
screens by moving components around and possibly removing them from the
screens. The AncestorListener definition is shown below.

public interface AncestorListener extends EventListener {

public void ancestorAdded(AncestorEvent ancestorEvent);

public void ancestorMoved(AncestorEvent ancestorEvent);

public void ancestorRemoved(AncestorEvent ancestorEvent);

}

To demonstrate, the following program associates an AncestorListener with the
root pane of a JFrame. You’ll see the messages “Removed,” “Added,” and “Moved”
when the program first starts up. In addition, you’ll see “Moved” messages when
you drag the frame around.

import java.awt.*;

import javax.swing.*;

import javax.swing.event.*;

Chapter 4

90

820.5281_CH04 10/6/00 2:35 PM Page 90

public class AncestorSampler {

public static void main (String args[]) {

JFrame f = new ExitableJFrame("Ancestor Sampler");

AncestorListener ancestorListener = new AncestorListener() {

public void ancestorAdded(AncestorEvent ancestorEvent) {

System.out.println ("Added");

}

public void ancestorMoved(AncestorEvent ancestorEvent) {

System.out.println ("Moved");

}

public void ancestorRemoved(AncestorEvent ancestorEvent) {

System.out.println ("Removed");

}

};

f.getRootPane().addAncestorListener(ancestorListener);

f.getRootPane().setVisible(false);

f.getRootPane().setVisible(true);

f.setSize (300, 200);

f.setVisible (true);

}

}

Listening to Inherited Events of a JComponent

In addition to the ability to listen for an instance of an AncestorEvent or
PropertyChangeEvent with a JComponent, the JComponent inherits the ability to
listen to many other events from its Container and Component superclasses.

Table 4-6 lists eight event listeners. You may find yourself using the new lis-
tener interfaces quite a bit, but nothing prevents the older ones from working.

CLASS EVENT LISTENER EVENT OBJECT

Component ComponentListener componentHidden(ComponentEvent)

componentMoved(ComponentEvent)

componentResized(ComponentEvent)

componentShown(ComponentEvent)

Component FocusListener focusGained(FocusEvent)

focusLost(FocusEvent)

Component HierarchyBoundsListener ancestorMoved(HierarchyEvent)

ancestorResized(HierarchyEvent)

Component HierarchyListener hierarchyChanged(HierarchyEvent)

Core Swing Components

91

(continued)

820.5281_CH04 10/6/00 2:35 PM Page 91

CLASS EVENT LISTENER EVENT OBJECT

Component InputMethodListener caretPositionChanged

(InputMethodEvent)

inputMethodTextChanged

(InputMethodEvent)

Component KeyListener keyPressed(KeyEvent)

keyReleased(KeyEvent)

keyTyped(KeyEvent)

Component MouseListener mouseClicked(MouseEvent)

mouseEntered(MouseEvent)

mouseExited(MouseEvent)

mousePressed(MouseEvent)

mouseReleased(MouseEvent)

Component MouseMotionListener mouseDragged(MouseEvent)

mouseMoved(MouseEvent)

Component PropertyChangeListener propertyChange(PropertyChangeEvent)

Container ContainerListener componentAdded(ContainerEvent)

componentRemoved(ContainerEvent)

Table 4-6: JComponent inherited event listeners

Class JToolTip

The Swing components support the ability to display brief pop-up messages when
the cursor rests over them. The class used to display pop-up messages is JToolTip.

Creating a JToolTip

Calling the public void setToolTipText(String text) method of JComponent
automatically causes the creation of a JToolTip instance when the mouse rests
over a component with the installed pop-up message. You don’t normally call
the JToolTip constructor directly. There’s only one constructor, and it’s of the no-
argument variety.

Tooltip text is normally one line long. However, if the text string begins with
<html> (in any case) then the contents can be any HTML 3.2 formatted text. For
instance, the following line causes the pop-up message shown in Figure 4-3.

component.setToolTipText("<html>Tooltip
Message");

Chapter 4

92

Table 4-6 (continued)

820.5281_CH04 10/6/00 2:35 PM Page 92

Creating Customized JToolTip Objects

You can easily customize the display characteristics for all pop-up messages by
setting JToolTip UIResource elements, as shown in “Customizing JToolTip Look
and Feel” later in this chapter. The JComponent class defines an easy way for you
to customize the display characteristics of the tooltip when it’s placed over a spe-
cific component. Simply subclass the component you want to customize and
override its inherited public JToolTip createToolTip() method. The
createToolTip() method is called when the ToolTipManager has determined that
its time to display the pop-up message.

To customize the pop-up tooltip appearance, just override the method and
customize the JToolTip returned from the inherited method. For instance, the
following source demonstrates the setting of a custom coloration for the tooltip
for a JButton, as shown in Figure 4-4.

JButton b = new JButton("Hello World") {

public JToolTip createToolTip() {

JToolTip tip = super.createToolTip();

tip.setBackground(Color.yellow);

tip.setForeground(Color.green);

return tip;

}

};

Core Swing Components

93

Figure 4-3: HTML-based tooltip text

Figure 4-4: Tooltip text displayed with custom colors

820.5281_CH04 10/6/00 2:35 PM Page 93

After the JToolTip has been created, you can configure the inherited JComponent
properties or any of the properties specific to JToolTip as shown in Table 4-7.

PROPERTY NAME DATA TYPE ACCESS

accessibleContext AccessibleContext read-only

component JComponent read-write

tipText String read-write

UI ToolTipUI read-only

UIClassID String read-only

Table 4-7: JToolTip properties

Displaying Positional ToolTip Text

Swing components can even support the display of different tooltip text, depending
on where the mouse pointer is located. This requires overriding the public boolean
contains(int x, int y) method, which originates from the Component class.

For instance, after enhancing the customized JButton created in the previous
section of this chapter, the tooltip text will differ, depending on whether or not
the mouse pointer is within 50 pixels from the left edge of the component.

JButton button = new JButton("Hello World") {

public JToolTip createToolTip() {

JToolTip tip = super.createToolTip();

tip.setBackground(Color.yellow);

tip.setForeground(Color.green);

return tip;

}

public boolean contains(int x, int y) {

if (x < 50) {

setToolTipText("Got Green Eggs?");

} else {

setToolTipText("Got Ham?");

}

return super.contains(x, y);

}

};

Chapter 4

94

820.5281_CH04 10/6/00 2:35 PM Page 94

Customizing a JToolTip Look and Feel

Each installable Swing look and feel provides a different JToolTip appearance
and a set of default UIResource value settings. Figure 4-5 shows the appearance
of the JToolTip component for the preinstalled set of look and feels: Motif,
Windows, and Metal.

The available set of UIResource-related properties for a JToolTip is shown in
Table 4-8. For the JToolTip component, there are five different properties.

PROPERTY STRING OBJECT TYPE

ToolTip.background Color

ToolTip.border Border

ToolTip.font Font

ToolTip.foreground Color

ToolTipUI String

Table 4-8: JToolTip UIResource elements

As noted earlier in this chapter, the JToolTip class supports the display of arbi-
trary HTML content. This permits the display of multi-column/row input. With
the original JFC/Swing release, this HTML and multi-line tip support wasn’t

Core Swing Components

95

Figure 4-5: JToolTip under different look and feels

Motif Windows

Metal

820.5281_CH04 10/6/00 2:35 PM Page 95

available. It was necessary to create and install a new ToolTipUI delegate, a con-
cept described more fully in Chapter 18.

Class ToolTipManager

Although the JToolTip is something of a passive object, in the sense that the
JComponent creates and shows the JToolTip on its own, there are many more con-
figurable aspects of its usage. However, these configurable aspects are the
responsibility of the class that manages tooltips, and not the JToolTip itself. The
class that manages tooltip usage is aptly named ToolTipManager. With the
Singleton design pattern, no constructor for ToolTipManager exists. Instead, you
have access to the current manager through the static sharedInstance() method
of ToolTipManager.

ToolTipManager Properties

Once you have accessed the shared instance of ToolTipManager, you can cus-
tomize when and if tooltip text appears. As Table 4-9 shows, there are five
configurable properties.

PROPERTY NAME DATA TYPE ACCESS

dismissDelay int read-write

enabled boolean read-write

initialDelay int read-write

lightWeightPopupEnabled boolean read-write

reshowDelay int read-only

Table 4-9: ToolTipManager properties

Initially, tooltips are enabled, but you can disable them with ToolTipManager.
sharedInstance().setEnabled(false). This allows you to always associate tooltips
with components, while letting the end user enable/disable them when desired.

There are three timing-oriented properties: initialDelay, dismissDelay, and
reshowDelay. They all measure time in milliseconds. The initialDelay property is
the number of milliseconds the user must rest the mouse inside the component
before the appropriate tooltip text appears. The dismissDelay specifies the length
of time the text appears while the mouse remains motionless; if the user moves
the mouse, it also causes the text to disappear. The reshowDelay determines how
long a user must remain outside a component before reentry would cause the
pop-up text to reappear.

Chapter 4

96

820.5281_CH04 10/6/00 2:35 PM Page 96

The remaining property lightWeightPopupEnabled is used to determine the
pop-up window type to hold the tooltip text. If the property is true and the pop-
up text fits entirely within the bounds of the top-level window, the text appears
within a Swing JPanel. If this property is false and the pop-up text fits entirely
within the bounds of the top-level window, the text appears within an AWT
Panel. If part of the text wouldn’t appear within the top-level window no matter
what the property setting is, the pop-up text would appear within a Window.

Although not properties of ToolTipManager, there are two other methods of
ToolTipManager worth mentioning:

public void registerComponent(JComponent component)

public void unregisterComponent(JComponent component)

When you call the setToolTipText() method of JComponent, this causes the com-
ponent to register itself with the ToolTipManager. There are times, however, when
you need to register a component directly. This is necessary when the display of
part of a component is left to another renderer (see Chapter 16). With JTree, for
instance, each node of the tree is displayed by a TreeCellRenderer. When the ren-
derer displays the tooltip text, you “register” the JTree and tell the renderer what
text to display.

JTree tree = new JTree(...);

ToolTipManager.sharedInstance().registerComponent(tree);

TreeCellRenderer renderer = new ATreeCellRenderer(...);

tree.setCellRenderer(renderer);

...

public class ATreeCellRenderer implements TreeCellRenderer {

...

public Component getTreeCellRendererComponent(JTree tree, Object value, boolean

selected, boolean expanded, boolean leaf, int row, boolean hasFocus) {

...

renderer.setToolTipText("Some Tip");

return renderer;

}

}

NOTE If this sounds confusing, not to worry. We’ll revisit the JTree in
Chapter 16.

Core Swing Components

97

820.5281_CH04 10/6/00 2:35 PM Page 97

Class JLabel

The first Swing component we’ll examine closely is the sim-
plest, the JLabel. The JLabel serves as the replacement
component for the AWT Label but it can do much more.
Whereas the AWT Label is limited to a single line of text, the
Swing JLabel can have text, or images, or both. The text can
be a single line of text or HTML. In addition JLabel can sup-
port different enabled and disabled images. Figure 4-6
shows some sample JLabel components.

NOTE A JLabel subclass is used as the default renderer for each of the
JList, JComboBox, JTable, and JTree components.

Creating a JLabel

With the six constructors for JLabel, you can customize any of three properties of
the JLabel: its text, icon, or horizontalAlignment. By default, the text and icon
properties are empty, whereas the initial horizontal alignment depends on the
constructor arguments. These settings can be either JLabel.LEFT, JLabel.CENTER,
or JLabel.RIGHT. In most cases, not specifying the horizontal alignment setting
results in a left-aligned label. However, if only the initial icon is specified, then
the default alignment is centered.

1. public JLabel()

JLabel label = new JLabel();

2. public JLabel(Icon image)

Icon icon = new ImageIcon("dog.jpg");

JLabel label = new JLabel(icon);

3. public JLabel(Icon image, int horizontalAlignment)

JLabel label = new JLabel(icon, JLabel.RIGHT);

4. public JLabel(String text)

JLabel label = new JLabel("Dog");

5. public JLabel(String text, int horizontalAlignment)

JLabel label = new JLabel("Dog", JLabel.RIGHT);

Chapter 4

98

Figure 4-6: Sample JLabel components

820.5281_CH04 10/6/00 2:35 PM Page 98

6. public JLabel(String text, Icon icon, int horizontalAlignment)

JLabel label = new JLabel("Dog", icon, JLabel.RIGHT);

JLabel Properties

Table 4-10 shows the 13 properties of JLabel. They allow you to customize the
content, position, and (in a limited sense) the behavior of the JLabel.

PROPERTY NAME DATA TYPE ACCESS

accessibleContext AccessibleContext read-only

disabledIcon Icon read-write bound

displayedMnemonic char read-write bound

horizontalAlignment int read-write bound

horizontalTextPosition int read-write bound

icon Icon read-write bound

iconTextGap int read-write bound

labelFor Component read-write bound

text String read-write bound

UI LabelUI read-write

UIClassID String read-only

verticalAlignment int read-write bound

verticalTextPosition int read-write bound

Table 4-10: JLabel properties

The content of the JLabel is the text and its associated image. Displaying an
image within a JLabel will be discussed in the section “Interface Icon” later in
this chapter. However, different icons can be displayed, depending on whether
the JLabel is enabled or disabled. By default, the icon is a grayscaled version of
the enabled icon, if the enabled icon comes from an Image object (ImageIcon to be
described later in the chapter). If the enabled icon doesn’t come from an Image,
there’s no icon when JLabel is disabled, unless manually specified.

The position of the contents of the JLabel is described by four different
properties: horizontalAlignment, horizontalTextPosition, verticalAlignment, and
verticalTextPosition. The horizontalAlignment and verticalAlignment properties
describe the position of the entire contents of the JLabel.

TIP Alignments have an effect only if there’s extra space for the layout
manager to position the component. If you’re using a layout manager
such as FlowLayout, which sizes components to their preferred size, these
settings will effectively be ignored.

Core Swing Components

99

820.5281_CH04 10/6/00 2:35 PM Page 99

The horizontal position can be any of the JLabel constants LEFT, RIGHT, or CENTER.
The vertical position can be TOP, BOTTOM, or CENTER. Figure 4-7 shows various
alignment settings, with the label reflecting the alignments.

The text position properties reflect where the text is positioned relative to the
icon when both are present. The properties can be set to the same constants as
the alignment constants. Figure 4-8 shows various text position settings, with
each label reflecting the setting.

NOTE The constants for the different positions come from the
SwingConstants interface that the JLabel class implements.

Chapter 4

100

Figure 4-7: Various JLabel alignments

Figure 4-8: Various JLabel text positions

820.5281_CH04 10/6/00 2:35 PM Page 100

Handling JLabel Events

No event-handling capabilities are specific to the JLabel. Besides the event-han-
dling capabilities inherited through JComponent, the closest thing there is for
event handling with the JLabel is the combined usage of the displayedMnemonic
and labelFor properties.

When the displayedMnemonic and labelFor properties are set, pressing the
keystroke specified by the mnemonic, along with the platform-specific hotkey
(usually ALT), causes the input focus to shift to the component associated with
the labelFor property. This can be helpful when a component doesn’t have its
own manner of displaying a mnemonic setting, such as with all the text input
components, as shown in Figure 4-9.

JLabel label = new JLabel("Username");

JTextField textField = new JTextField();

label.setDisplayedMnemonic(KeyEvent.VK_U);

label.setLabelFor(textField);

NOTE The component setting of the labelFor property is stored as a client
property of the JLabel with the LABELED_BY_PROPERTY key constant. The set-
ting is used for accessibility purposes.

Customizing JLabel Look and Feel

Each installable Swing look and feel provides a different JLabel appearance and
set of default UIResource value settings. Although appearances differ based on the
current look and feel, the differences are minimal within the preinstalled set of

Core Swing Components

101

Figure 4-9: Using a JLabel to display the mnemonic for another component

820.5281_CH04 10/6/00 2:35 PM Page 101

look and feels. For the available set of UIResource-related properties for a JLabel,
see Table 4-11. There are eight different properties for the JLabel component.

PROPERTY STRING OBJECT TYPE

Label.actionMap ActionMap

Label.background Color

Label.disabledForeground Color

Label.border Border

Label.disabledShadow Color

Label.font Font

Label.foreground Color

LabelUI String

Table 4-11: JLabel UIResource elements

Interface Icon

The Icon interface is used to associate glyphs with various components. These
glyphs (like a symbol on a highway sign that conveys information nonverbally,
such as “winding road ahead!”) can be simple drawings or GIF images loaded
from disk with the ImageIcon class. The interface contains two properties describ-
ing the size and a method to paint the glyph.

public interface Icon {

// Properties

public int getIconHeight();

public int getIconWidth();

// Other Methods

public void paintIcon(Component c, Graphics g, int x, int y);

}

Creating an Icon

Creating an Icon is as simple as implementing the interface. All you have to do
is specify the size of the icon and what to draw. The following is one such Icon
implementation. It will be used throughout the rest of the book. The icon is a dia-
mond-shaped glyph in which the size, color, and filled-status are all configurable.

One tip in implementing the paintIcon() method of the Icon interface:
Translate the drawing coordinates of the graphics context based on the x and y
position passed in, and then translate them back when the drawing is done. This
greatly simplifies the different drawing operations.

Chapter 4

102

820.5281_CH04 10/6/00 2:35 PM Page 102

import javax.swing.*;

import java.awt.*;

public class DiamondIcon implements Icon {

private Color color;

private boolean selected;

private int width;

private int height;

private Polygon poly;

private static final int DEFAULT_WIDTH = 10;

private static final int DEFAULT_HEIGHT = 10;

public DiamondIcon(Color color) {

this (color, true, DEFAULT_WIDTH, DEFAULT_HEIGHT);

}

public DiamondIcon(Color color, boolean selected) {

this (color, selected, DEFAULT_WIDTH, DEFAULT_HEIGHT);

}

public DiamondIcon (Color color, boolean selected, int width, int height) {

this.color = color;

this.selected = selected;

this.width = width;

this.height = height;

initPolygon();

}

private void initPolygon() {

poly = new Polygon();

int halfWidth = width/2;

int halfHeight = height/2;

poly.addPoint (0, halfHeight);

poly.addPoint (halfWidth, 0);

poly.addPoint (width, halfHeight);

poly.addPoint (halfWidth, height);

}

public int getIconHeight() {

return height;

}

public int getIconWidth() {

return width;

Core Swing Components

103

820.5281_CH04 10/6/00 2:35 PM Page 103

}

public void paintIcon(Component c, Graphics g, int x, int y) {

g.setColor (color);

g.translate (x, y);

if (selected) {

g.fillPolygon (poly);

} else {

g.drawPolygon (poly);

}

g.translate (-x, -y);

}

}

Using an Icon

Once you have your Icon implementation, using the Icon is as simple as finding a
component with an appropriate property. We’ve already discussed JLabel, so
we’ll use the icon with a JLabel.

Icon icon = new DiamondIcon(Color.red, true, 25, 25);

JLabel label = new JLabel(icon);

Figure 4-10 shows what such a label might look like.

Class ImageIcon

The ImageIcon class presents an implementation of the Icon interface for creating
glyphs from AWT Image objects, whether from memory (a byte[]), off a disk (a
file name), or over the network (a URL). Unlike regular Image objects, the loading
of an ImageIcon is immediately started when the ImageIcon is created, though it

Chapter 4

104

Figure 4-10: Using an Icon in a JLabel

820.5281_CH04 10/6/00 2:35 PM Page 104

might not be fully loaded when used. In addition, ImageIcon objects are serializ-
able so that they can be easily used by JavaBean components, unlike Image
objects.

Creating an ImageIcon

There are nine constructors for an ImageIcon. The no-argument version creates
an uninitialized version (empty). The remaining eight offer the ability to create
an ImageIcon from an Image, byte array, file name String, or URL, with or without
a description.

1. public ImageIcon()

Icon icon = new ImageIcon();

icon.setImage(anImage);

2. public ImageIcon(Image image)

Icon icon = new ImageIcon(anImage);

3. public ImageIcon(String filename)

Icon icon = new ImageIcon(filename);

4. public ImageIcon(URL location)

Icon icon = new ImageIcon(url);

5. public ImageIcon(byte imageData[])

Icon icon = new ImageIcon(aByteArray);

6. public ImageIcon(Image image, String description)

Icon icon = new ImageIcon(anImage, "Duke");

7. public ImageIcon(String filename, String description)

Icon icon = new ImageIcon(filename, filename);

8. public ImageIcon(URL location, String description)

Icon icon = new ImageIcon(url, location.getFile());

9. public ImageIcon(byte imageData[], String description)

Icon icon = new ImageIcon(aByteArray, "Duke");

Core Swing Components

105

820.5281_CH04 10/6/00 2:35 PM Page 105

Using an ImageIcon

Using an ImageIcon is as simple as using an Icon: just create the ImageIcon and
associate it with a component.

Icon icon = new ImageIcon("Warn.gif");

JLabel label3 = new JLabel("Warning", icon, JLabel.CENTER)

ImageIcon Properties

Table 4-12 shows the six properties of ImageIcon. The height and width of the
ImageIcon are the height and width of the actual Image object. The
imageLoadStatus property represents the results of the loading of the ImageIcon
from the hidden MediaTracker, either MediaTracker.ABORTED, MediaTracker.ERRORED,
or MediaTracker.COMPLETE.

PROPERTY NAME DATA TYPE ACCESS

description String read-write

iconHeight int read-only

iconWidth int read-only

image Image read-write

imageLoadStatus int read-only

imageObserver ImageObserver read-write

Table 4-12: ImageIcon properties

Sometimes it’s useful to use an ImageIcon to load an Image and then just ask for
the Image object from the Icon.

ImageIcon imageIcon = new ImageIcon(...);

Image image = imageIcon.getImage();

There is one major problem with using ImageIcon objects: They don’t work when
the image and class file using the icon are loaded in a JAR (Java archive) file.
You can’t specify the file name as a String and let the ImageIcon find the file. You
must manually get the image data first and then pass the data along to the
ImageIcon constructor.

The following ImageLoader class provides a public static Image getImage
(Class relativeClass, String filename) method. You specify both the base class
where the image file relative is found and the file name for the image file. Then,
you just need to pass the Image object returned to the constructor of ImageIcon.

Chapter 4

106

820.5281_CH04 10/6/00 2:35 PM Page 106

import java.awt.*;

import java.io.*;

public final class ImageLoader {

private ImageLoader() {

}

public static Image getImage(Class relativeClass, String filename) {

Image returnValue = null;

InputStream is = relativeClass.getResourceAsStream(filename);

if (is != null) {

BufferedInputStream bis = new BufferedInputStream(is);

ByteArrayOutputStream baos = new ByteArrayOutputStream();

try {

int ch;

while ((ch = bis.read()) != -1) {

baos.write(ch);

}

returnValue =

Toolkit.getDefaultToolkit().createImage(baos.toByteArray());

} catch (IOException exception) {

System.err.println("Error loading: " + filename);

}

}

return returnValue;

}

}

Here’s how you use the helper class:

Image warnImage = ImageLoader.getImage(LabelJarSample.class, "Warn.gif");

Icon warnIcon = new ImageIcon(warnImage);

JLabel label2 = new JLabel(warnIcon);

TIP Keep in mind that Java supports GIF89A animated images.

Core Swing Components

107

820.5281_CH04 10/6/00 2:35 PM Page 107

Class GrayFilter

One additional class worth mentioning here is the GrayFilter class. Many of the
Swing component classes rely on this class to create a disabled version of an
Image to be used as an Icon. The components use the class automatically, but
there might be times when you need an AWT ImageFilter that does grayscales.
You can convert an Image from normal to grayed out with a call to the one useful
method of the class: public static Image createDisabledImage(Image image).

Image normalImage = ...

Image grayImage = GrayFilter.createDisabledImage(normalImage)

You can now use the grayed-out image as the Icon on a component:

Icon warningIcon = new ImageIcon(grayImage);

JLabel warningLabel = new JLabel(warningIcon);

Class AbstractButton

The AbstractButton class is an important Swing class that works behind the
scenes as the parent class of all the Swing button components, as shown in
Figure 4-11. The JButton, described in the section “Class Button” later in this
chapter, is the simplest of the subclasses. The remaining subclasses are
described in later chapters.

Each of the AbstractButton subclasses uses the ButtonModel interface to store
their data model. The DefaultButtonModel class is the default implementation
used. In addition, you can group any set of AbstractButton objects into a
ButtonGroup. Although this grouping is most natural with the JRadioButton and
JRadioButtonMenuItem components, any of the AbstractButton subclasses will
work. Figure 4-12 shows these UML relationships.

Chapter 4

108

820.5281_CH04 10/6/00 2:35 PM Page 108

AbstractButton Properties

Table 4-13 lists the 26 properties (with mnemonic listed twice) of AbstractButton
shared by all its subclasses. They allow you to customize the appearance of all
the buttons.

Core Swing Components

109

Figure 4-11: AbstractButton class hierarchy

JComponent

AbstractButton

JToggleButton JButton JMenuItem

JCheckBox

JRadioButton

JMenu

JCheckBoxMenuItem

JRadioButtonMenuItem

820.5281_CH04 10/6/00 2:35 PM Page 109

PROPERTY NAME DATA TYPE ACCESS

action Action read-write bound

actionCommand String read-write

borderPainted boolean read-write bound

contentAreaFilled boolean read-write bound

disabledIcon Icon read-write bound

disabledSelectedIcon Icon read-write bound

enabled boolean write-only

focusPainted boolean read-write bound

focusTraversable boolean read-only

horizontalAlignment int read-write bound

horizontalTextPosition int read-write bound

icon Icon read-write bound

margin Insets read-write bound

mnemonic char read-write bound

mnemonic int write-only

model ButtonModel read-write bound

pressedIcon Icon read-write bound

rolloverEnabled boolean read-write bound

rolloverIcon Icon read-write bound

rolloverSelectedIcon Icon read-write bound

selected boolean read-write

selectedIcon Icon read-write bound

selectedObjects Object[] read-only

text String read-write bound

UI ButtonUI read-write

verticalAlignment int read-write bound

verticalTextPosition int read-write bound

Table 4-13: AbstractButton properties

Chapter 4

110

Figure 4-12: AbstractButton UML relationship diagram

AbstractButton

ButtonGroup DefaultButtonModel

<<Interface>>
ButtonModel

<<Uses>>

0..n

820.5281_CH04 10/6/00 2:35 PM Page 110

NOTE AbstractButton has a deprecated label property. You should use the
equivalent text property instead.

TIP Keep in mind that all AbstractButton children can use HTML with
its text property to display HTML content within the label. Just prefix the
property setting with the string <html>.

Interface ButtonModel/Class DefaultButtonModel

The ButtonModel interface is used to describe the current state of the AbstractButton
component. In addition, it describes the set of event listeners objects that are
supported by all the different AbstractButton children. Its definition follows:

public interface ButtonModel extends ItemSelectable {

// Properties

public String getActionCommand();

public void setActionCommand(String newValue);

public boolean isArmed();

public void setArmed(boolean newValue);

public boolean isEnabled();

public void setEnabled(boolean newValue);

public void setGroup(ButtonGroup newValue);

public int getMnemonic();

public void setMnemonic(int newValue);

public boolean isPressed();

public void setPressed(boolean newValue);

public boolean isRollover();

public void setRollover(boolean newValue);

public boolean isSelected();

public void setSelected(boolean newValue);

// Listeners

public void addActionListener(ActionListener listener);

public void removeActionListener(ActionListener listener);

public void addChangeListener(ChangeListener listener);

public void removeChangeListener(ChangeListener listener);

public void addItemListener(ItemListener listener);

public void removeItemListener(ItemListener listener);

}

Core Swing Components

111

820.5281_CH04 10/6/00 2:35 PM Page 111

The specific implementation of ButtonModel you’ll use, unless you create your
own, is the DefaultButtonModel class. The DefaultButtonModel class defines all the
event registration methods for the different event listeners and manages the but-
ton state and grouping within a ButtonGroup. Its set of nine properties is shown in
Table 4-14. They all come from the ButtonGroup interface, except selectedObjects,
which is new to the DefaultButtonModel class, but more useful to the
JToggleButton.ToggleButtonModel, which is discussed in Chapter 5.

PROPERTY NAME DATA TYPE ACCESS

actionCommand String read-write

armed boolean read-write

enabled boolean read-write

group ButtonGroup read-write

mnemonic int read-write

pressed boolean read-write

rollover boolean read-write

selected boolean read-write

selectedObjects Object[] read-only

Table 4-14: DefaultButtonModel properties

Most of the time, you don’t access the button model directly. Instead, the com-
ponents that use the ButtonModel wrap their property calls to update the button
model properties.

NOTE The DefaultButtonModel also lets you get the listeners for a specific
type with public EventListener[] getListeners(Class listenerType).

Understanding AbstractButton Mnemonics

A mnemonic is a special keyboard accelerator that when pressed causes a partic-
ular action to happen. In the case of the JLabel discussed earlier in the section
“Class JLabel,” pressing the displayed mnemonic causes the associated compo-
nent to get the input focus. In the case of an AbstractButton, pressing the
mnemonic for a button causes its selection.

The actual pressing of the mnemonic requires the pressing of a look-and-
feel–specific hotkey (the key tends to be the ALT key). So, if the mnemonic for a
button was the “B” key, you’d need to press ALT-B to activate the button with the

Chapter 4

112

820.5281_CH04 10/6/00 2:35 PM Page 112

B-key mnemonic. When the button is activated, registered
listeners will be notified of appropriate state changes. For
instance, with the JButton all ActionListener objects would
be notified.

If the mnemonic key is part of the text label for the but-
ton, you’ll see the character underlined. This does depend
on the current look and feel and could be displayed differ-
ently. In addition, if the mnemonic isn’t part of the text
label, there’ll be no visual indicator for selecting the partic-
ular mnemonic key.

Figure 4-13 shows two buttons: one with a “W”
mnemonic and the other with an “H” mnemonic. The left
button has a label with W in its contents, so it shows the first W underlined. The
second component doesn’t benefit from this behavior.

To assign a mnemonic to an abstract button, you can use either one of the
setMnemonic() methods. One accepts a char argument and the other an int.
Personally, I prefer the int variety, in which the value is one of the many VK_*
constants from the KeyEvent class.

AbstractButton button1 = new JButton("Warning");

button1.setMnemonic(KeyEvent.VK_W);

content.add(button1);

Understanding AbstractButton Icons

AbstractButton has seven specific icon properties. The natural or default icon is
the icon property. It is used for all cases unless a different icon is specified or
there’s a default behavior provided by the component. The selectedIcon property
is the icon used when the button is selected. The pressedIcon is used when the
button is pressed. Which of these two icons is used depends on the component,
because a JButton is pressed but not selected, whereas a JCheckBox is selected but
not pressed.

The disabledIcon and disabledSelectedIcon properties are used when the
button has been disabled [setEnabled(false)]. By default, if the icon is an
ImageIcon, a grayscaled version of the icon will be used.

The remaining two icon properties, rolloverIcon and rolloverSelectedIcon,
allow you to display different icons when the mouse moves over the button (and
rolloverEnabled is true).

Core Swing Components

113

Figure 4-13: AbstractButton mnemonics

820.5281_CH04 10/6/00 2:35 PM Page 113

Understanding Internal AbstractButton Positioning

The horizontalAlignment, horizontalTextPosition, verticalAlignment, and
verticalTextPosition properties share the same settings and behavior as the
JLabel class. They’re listed in Table 4-15.

POSITION PROPERTY AVAILABLE SETTINGS

horizontalAlignment LEFT, CENTER, RIGHT

horizontalTextPosition LEFT, CENTER, RIGHT

verticalAlignment TOP, CENTER, BOTTOM

verticalTextPosition TOP, CENTER, BOTTOM

Table 4-15: AbstractButton position constants

Handling AbstractButton Events

Although you do not create AbstractButton instances directly, you do create sub-
classes. All of them share a common set of event-handling capabilities. You can
register PropertyChangeListener, ActionListener, ItemListener, and ChangeListener
objects with abstract buttons. The PropertyChangeListener object will be dis-
cussed next, and the remaining objects I just listed will be discussed in later
chapters of this book, with the appropriate components.

Listening to AbstractButton Events
with a PropertyChangeListener

Like the JComponent class, the AbstractButton component supports the registering
of PropertyChangeListener objects to detect when bound properties of an
instance of the class change.

Unlike the JComponent class, the AbstractButton component provides a set of
class constants to signify the different property changes. These constants are
listed in Table 4-16.

PROPERTY CHANGE CONSTANT

BORDER_PAINTED_CHANGED_PROPERTY

CONTENT_AREA_FILLED_CHANGED_PROPERTY

DISABLED_ICON_CHANGED_PROPERTY

DISABLED_SELECTED_ICON_CHANGED_PROPERTY

FOCUS_PAINTED_CHANGED_PROPERTY

Chapter 4

114

(continued)

820.5281_CH04 10/6/00 2:35 PM Page 114

PROPERTY CHANGE CONSTANT

HORIZONTAL_ALIGNMENT_CHANGED_PROPERTY

HORIZONTAL_TEXT_POSITION_CHANGED_PROPERTY

ICON_CHANGED_PROPERTY

MARGIN_CHANGED_PROPERTY

MNEMONIC_CHANGED_PROPERTY

MODEL_CHANGED_PROPERTY

PRESSED_ICON_CHANGED_PROPERTY

ROLLOVER_ENABLED_CHANGED_PROPERTY

ROLLOVER_ICON_CHANGED_PROPERTY

ROLLOVER_SELECTED_ICON_CHANGED_PROPERTY

SELECTED_ICON_CHANGED_PROPERTY

TEXT_CHANGED_PROPERTY

VERTICAL_ALIGNMENT_CHANGED_PROPERTY

VERTICAL_TEXT_POSITION_CHANGED_PROPERTY

Table 4-16: AbstractButton PropertyChangeListener support constants

Therefore, instead of hard-coding specific text strings, you can create a
PropertyChangeListener that uses these constants.

public class AbstractButtonPropertyChangeListener implements

PropertyChangeListener {

public void propertyChange(PropertyChangeEvent e) {

String propertyName = e.getPropertyName();

if (e.getPropertyName().equals(AbstractButton.TEXT_CHANGED_PROPERTY)) {

String newText = (String) e.getNewValue();

String oldText = (String) e.getOldValue();

System.out.println(oldText + " changed to " + newText);

} else if (e.getPropertyName().equals(AbstractButton.ICON_CHANGED_PROPERTY))

{

Icon icon = (Icon) e.getNewValue();

if (icon instanceof ImageIcon) {

System.out.println("New icon is an image");

}

}

}

}

Core Swing Components

115

Table 4-16 (continued)

820.5281_CH04 10/6/00 2:35 PM Page 115

Class Button

The JButton component is your basic AbstractButton component that can be
selected. It replaces the AWT Button class. Whereas the AWT Button is restricted
to a single line of text, the JButton supports text, images, and HTML-based
labels, as shown in Figure 4-14.

Creating a JButton

The JButton class has five constructors. You can create a button with or without a
text label or icon. The icon represents the default or selected icon property from
AbstractButton.

1. public JButton()

JButton button = new JButton();

2. public JButton(Icon image)

JButton button = new JButton();

3. public JButton(String text)

JButton button = new JButton();

4. public JButton(String text, Icon icon)

JButton button = new JButton();

5. public JButton(Action action)

Action action = …;

JButton button = new JButton();

Chapter 4

116

Figure 4-14: Example JButton components

820.5281_CH04 10/6/00 2:35 PM Page 116

NOTE Creating a JButton from an Action initializes the text label,
icon, enabled status, and tooltip text. In addition, the ActionListener
of the Action will be notified upon selection.

JButton Properties

The JButton component doesn’t add much to the AbstractButton. As Table 4-17
shows, of the four properties of JButton, the only new behavior added is enabling
the button to be the default.

PROPERTY NAME DATA TYPE ACCESS

accessibleContext AccessibleContext read-only

defaultButton boolean read-only

defaultCapable boolean read-write bound

UIClassID String read-only

Table 4-17: JButton properties

The default button tends to be drawn with a different and darker border than the
remaining buttons. When a button is the default, pressing the ENTER key while in
the top-level window causes the button to be selected. This only works as long as
the component with the input focus, such as a text component or another but-
ton, doesn’t consume the ENTER key. Because the defaultButton property is
read-only, how (you might be asking) do you set a button as
the default? All top-level Swing windows contain a
JRootPane, to be described in Chapter 8. You tell this
JRootPane which button is the default by setting its
defaultButton property. Only buttons whose defaultCapable
property is true can be configured to be the default. Figure
4-15 shows the top-right button set as the default.

The following source code demonstrates the setting of
the default button component, as well as the basic JButton
usage. If the default button appearance doesn’t seem
that obvious in Figure 4-15, wait until the JOptionPane is
described in Chapter 9, where the difference in appearance
will be more obvious.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

Core Swing Components

117

Figure 4-15: Setting a default button

820.5281_CH04 10/6/00 2:35 PM Page 117

public class DefaultButton {

public static void main(String args[]) {

JFrame frame = new ExitableJFrame("DefaultButton");

Container content = frame.getContentPane();

content.setLayout(new GridLayout(2, 2));

JButton button1 = new JButton("Text Button");

button1.setMnemonic(KeyEvent.VK_B);

content.add(button1);

Icon warnIcon = new ImageIcon("Warn.gif");

JButton button2 = new JButton(warnIcon);

content.add(button2);

JButton button3 = new JButton("Warning", warnIcon);

content.add(button3);

String htmlButton = "<html>^{HTML} _{Button}
" +

"<u>Multi-line</u>";

JButton button4 = new JButton(htmlButton);

content.add(button4);

JRootPane rootPane = frame.getRootPane();

rootPane.setDefaultButton(button2);

frame.setSize(300, 200);

frame.setVisible(true);

}

}

Handling JButton Events

The JButton component itself has no specific event-handling capabilities. They’re
all inherited from AbstractButton. Although you can listen for change events,
item events, and property change events, the most helpful listener with the
JButton is the ActionListener.

Chapter 4

118

820.5281_CH04 10/6/00 2:35 PM Page 118

Listening to JButton Events with an ActionListener

When the JButton component is selected, all registered ActionListener objects
are notified. This behavior is identical to the AWT Button component and makes
transitioning from the AWT Button to the Swing JButton that much easier.

When the button is selected, an ActionEvent is passed to each listener. This
event passes along the actionCommand property of the button to help identify
which button was selected when a shared listener is used across multiple com-
ponents. If the actionCommand property hasn’t been explicitly set, the current text
property is passed along instead.

Figure 4-15 shows the sample program screen. The following source code adds
the event-handling capabilities to the default button example in the previous
section of this chapter. Notice that the default button status is ignored, because all
the components consume the ENTER key. Another component such as a JList or
JComboBox, is necessary to get the input focus for the ENTER key to work properly.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class ActionButtonSample {

public static void main(String args[]) {

JFrame frame = new ExitableJFrame("DefaultButton");

ActionListener actionListener = new ActionListener() {

public void actionPerformed(ActionEvent actionEvent) {

String command = actionEvent.getActionCommand();

System.out.println ("Selected: " + command);

}

};

Container content = frame.getContentPane();

content.setLayout(new GridLayout(2, 2));

JButton button1 = new JButton("Text Button");

button1.setMnemonic(KeyEvent.VK_B);

button1.setActionCommand("First");

button1.addActionListener(actionListener);

content.add(button1);

Icon warnIcon = new ImageIcon("Warn.gif");

JButton button2 = new JButton(warnIcon);

button2.setActionCommand("Second");

Core Swing Components

119

820.5281_CH04 10/6/00 2:35 PM Page 119

button2.addActionListener(actionListener);

content.add(button2);

JButton button3 = new JButton("Warning", warnIcon);

button3.setActionCommand("Third");

button3.addActionListener(actionListener);

content.add(button3);

String htmlButton = "<html>^{HTML} _{Button}
" +

"<u>Multi-line</u>";

JButton button4 = new JButton(htmlButton);

button4.setActionCommand("Fourth");

button4.addActionListener(actionListener);

content.add(button4);

JRootPane rootPane = frame.getRootPane();

rootPane.setDefaultButton(button2);

frame.setSize(300, 200);

frame.setVisible(true);

}

}

Customizing a JButton Look and Feel

Each installable Swing look and feel provides a different JButton appearance and
set of default UIResource value settings. Figure 4-16 shows the appearance of the
JButton component for the preinstalled set of look and feels: Motif, Windows,
and Metal.

The available set of UIResource-related properties for a JButton is shown in
Table 4-18. For the JButton component, there are 16 different properties.

PROPERTY STRING OBJECT TYPE

Button.background Color

Button.border Border

Button.dashedRectGapHeight Integer

Button.dashedRectGapWidth Integer

Button.dashedRectGapX Integer

Button.dashedRectGapY Integer

Button.disabledText Color

Button.focus Color

Button.focusInputMap InputMap

Button.font Font

Chapter 4

120

(continued)

820.5281_CH04 10/6/00 2:35 PM Page 120

PROPERTY STRING OBJECT TYPE

Button.foreground Color

Button.margin Insets

Button.select Color

Button.textIconGap Integer

Button.textShiftOffset Integer

ButtonUI String

Table 4-18: JButton UIResource elements

Class JPanel

The last of the basic Swing components is the JPanel component. The JPanel
component serves as a replacement for two of the AWT components. It’s both a

Core Swing Components

121

Motif Windows

Metal

Figure 4-16: JButton under different look and feels

Table 4-18 (continued)

820.5281_CH04 10/6/00 2:35 PM Page 121

general-purpose container object, replacing the Panel container, and a replace-
ment for the Canvas component, for those times when you need a drawable
Swing component area.

Creating a JPanel

There are four constructors for JPanel. With the constructors, you can either change
the default layout manager from FlowLayout or change the default double buffering
that’s performed from true to false.

1. public JPanel()

JPanel label = new JPanel();

2. public JPanel(boolean isDoubleBuffered)

JPanel label = new JPanel(false);

3. public JPanel(LayoutManager manager)

JPanel label = new JPanel(new GridLayout(2,2));

4. public JPanel(LayoutManager manager, boolean isDoubleBuffered)

JPanel label = new JPanel(new GridLayout(2,2), false);

Using a JPanel

You can use JPanel as your general-purpose container or as a base class for a
new component. For the general purpose container, the procedure is simple: Just
create the panel, set its layout manager if necessary, and add components using
the add() method.

JPanel panel = new JPanel();

JButton okButton = new JButton("OK");

panel.add(okButton);

JButton cancelButton = new JButton("Cancel");

panel.add(CancelButton);

When you want to create a new component, subclass JPanel and override the
public void paintComponent(Graphics g) method. Although you can subclass
JComponent directly, it seems more appropriate to subclass JPanel. The following
demonstrates a simple component that draws an oval to fit the size of the compo-
nent; it also includes a test driver. Figure 4-17 shows the test driver program results.

Chapter 4

122

820.5281_CH04 10/6/00 2:35 PM Page 122

import java.awt.*;

import javax.swing.*;

public class OvalPanel extends JPanel {

Color color;

public OvalPanel() {

this(Color.black);

}

public OvalPanel(Color color) {

this.color = color;

}

public void paintComponent(Graphics g) {

int width = getWidth();

int height = getHeight();

g.setColor(color);

g.drawOval(0, 0, width, height);

}

public static void main(String args[]) {

JFrame frame = new ExitableJFrame("Oval Sample");

Container content = frame.getContentPane();

content.setLayout(new GridLayout(2, 2));

Color colors[] = {Color.red, Color.blue, Color.green, Color.yellow};

for (int i=0; i<4; i++) {

Core Swing Components

123

Figure 4-17: Our new OvalPanel component

820.5281_CH04 10/6/00 2:35 PM Page 123

OvalPanel panel = new OvalPanel(colors[i]);

content.add(panel);

}

frame.setSize(300, 200);

frame.setVisible(true);

}

}

NOTE One feature worth noting about the JPanel: By default, JPanel com-
ponents are opaque. This differs from JComponent, whose opaque setting by
default is false.

Customizing a JPanel Look and Feel

The available set of UIResource-related properties for a JPanel is shown in Table
4-19. For the JPanel component, there are five different properties. These settings
may have an effect on the components within the panel.

PROPERTY STRING OBJECT TYPE

Panel.background Color

Panel.border Border

Panel.font Font

Panel.foreground Color

PanelUI String

Table 4-19: JPanel UIResource elements

Summary

In this chapter, we explored the root of all Swing components: the JComponent
class. From there, we looked at some of the common elements of all compo-
nents, such as tooltips, as well as specific components such as JLabel. I also
discussed how to put glyphs (nonverbal images) on components with the help of
the Icon interface and the ImageIcon class, and the GrayFilter image filter for dis-
abled icons.

Chapter 4

124

820.5281_CH04 10/6/00 2:35 PM Page 124

We also dealt with the AbstractButton component, which serves as the root
component for all Swing button objects. We looked at its data model interface,
ButtonModel, and the default implementation of this interface,
DefaultButtonModel. Next, we looked at the JButton class, which is the simplest of
the AbstractButton implementations. And lastly, we looked at the JPanel as the
basic Swing container object.

In the Chapter 5, we’ll start to dig into some of the more complex
AbstractButton implementations: the toggle buttons.

Core Swing Components

125

820.5281_CH04 10/6/00 2:35 PM Page 125

820.5281_CH04 10/6/00 6:12 PM Page 126

