Spolsky Frontmatter.gxd 2/11/2001 8:47 AM Page Xxi

By Dave Winer, CEO, UserLand Software

I remember as if it were yesterday my first experience with a user. I
had been developing a software product for three years, all the while
thinking it was easy to use. A friend who had been listening to me
gush about how great it was asked if he could try it. Hesitantly, I
said yes.

I launched the program and we switched seats. I tried to say noth-
ing as he wondered what to do. The software didn’t have anything to
say. “What should I do?” he asked. I thought to myself, “I have some
work to do.”

This is the moment of truth for any software developer, and one
we avoid. In The Soul of a New Machine, Tracy Kidder tells about the
first problem report from “the field” about a computer system
developed at Data General in the late 1970s. The lead developer was
surprised. In his mind the computer was a development project;
that real people would try to use it attacked his perception of his
own product.

We all go through this; at a superficial level we think we're design-
ing for users, but no matter how hard we try, we're designing for
who we think the user is, and that means, sadly, that we're designing
for ourselves. Until you prove that it’s usable by other people, your
software is certainly not designed for them.

Until you make the shift and let the users tell you how your
software works, it simply can’t be usable. Every successful software
product is proof of this, as is every failure. How many times have
you installed some software or visited a Web site and wondered,
“What does this do?” Now, understand that other people are asking
the same question about your software. It’s a puzzle, to solve it you

xi

o



Spolsky Frontmatter.gxd 2/11/2001 8:47 AM Page x%’

xii

ALl

must figure out how to get your software into a user’s mind, and to
learn how to do that, you must learn how that mind works.

Joel's book is a milestone built on a strong foundation of practi-
cal experience. He’s absolutely right that user testing is easy. You
don’t need a lab to do it, although many people think you do. You
just need a computer and a person who doesn’t know your software.
It’s an iterative process. Do it once, it'll change your whole perspec-
tive. Do some engineering. Do it again with a new person. Repeat
the process until the first-time user knows what to do and can actu-
ally use the software to do what it was designed to do.

Joel’s book is about more than software design and user-centric-
ity. Once you learn how to communicate with users through
software, it’s inevitable that all your communication will improve.
The central “aha” is to realize that other people use your software,
and they don’t know what you know, and they don’t think like you
think they do.

There are some very simple truths in this book, and sometimes
the simplest truths can be most difficult. But Joel makes it so easy!
His stories are clear and human and fun. And that may be the biggest
lesson, if you haven’'t been designing for users, youre not having as
much fun doing software as you could.

I can tell you from personal experience that there’s nothing
more satisfying as a professional software developer than to have a
product resonate with the market, to have thousands of people tell
you that they couldn’t work without your software. To get there, you
have to learn from them as you teach. Yes, your software is great, |
believe you, but if no one uses it, it can't make the world a better
place.

Dave Winer
http://www.scripting.com/



Spolsky Frontmatter.gxd 2/11/2001 8:47 AM Page xj

Most of the hard core C++ programmers I know hate user interface
programming. This surprises me because I find UI programming to
be quintessentially easy, straightforward, and fun.

It’s easy because you usually don’t need algorithms more
sophisticated than how to center one rectangle in another. It's
straightforward because when you make a mistake, you can see it
right away and correct it. It's fun because the results of your work
are immediately visible. You feel like you are sculpting the program
directly.

I think most programmers’ fear of Ul programming comes from
their fear of doing UI design. They think that UI design is like
graphic design: that mysterious process by which creative, latte-
drinking, all-dressed-in-black people with interesting piercings
produce cool-looking artistic stuff. Programmers see themselves as
analytic, logical thinkers: strong at reasoning, weak on artistic judg-
ment. So they think they can’t do UI design.

Actually, I've found UI design to be quite easy and quite ratio-
nal. It’s not a mysterious matter that requires an art school degree
and a penchant for neon-purple hair. There is a rational way to
think about user interfaces with some simple, logical rules that you
can apply anywhere to improve the interfaces of the programs you
work on.

This book is not Zen and the Art of UI Design. It’s not art, it’s not
Buddhism, it’s just a set of rules. A way of thinking rationally and
methodically. This book is designed for programmers. I assume you
don’t need instructions for ow to make a menu bar; rather, you
need to think about what to put in your menu bar (or whether to
have one at all). You'll learn the primary axiom which guides all
good UI design and some of the corollaries. We'll look at some
examples from real life, modern GUI programs. When you're done,
you'll know enough to be a significantly better UI designer.

xiii

o



