Inhaltsverzeichnis

1	Einleit	itung			
2	Modellbildung mechanischer Antriebssysteme				
2.1	Einführung in die Modellbildung				
	2.1.1	Ziele der Modellbildung	5		
	2.1.2	Typen der Berechnungsmodelle	11		
		2.1.2.1 Allgemeines	11		
		2.1.2.2 Einteilung der Berechnungsmodelle	15		
		2.1.2.3 Beispiel: Antrieb eines Mechanismus	22		
2.2	Bewertung von Modellgleichungen				
	2.2.1	Regeln zur Verifikation von Modellgleichungen	24		
	2.2.2	Normierung der Parameter und der Variablen	27		
	2.2.3	Berechnungsmodelle von Schubkurbelgetrieben	29		
		2.2.3.1 Modellgleichungen	29		
		2.2.3.2 Elastisches Abtriebsglied mit Spiel	31		
		2.2.3.3 Spiel im Kurbelgelenk	39		
		2.2.3.4 Zur Kolbensekundärbewegung	41		
	2.2.4	Beispiele für mehrere Modellstufen	43		
		2.2.4.1 Modellgleichungen von Rotoren mit Unwucht	43		
		2.2.4.2 Schadensfall an einer Pumpenwelle	46		
		2.2.4.3 Versuchsstand mit Unwuchterreger	50		
2.3	Induktive Modellbildung		53		
	2.3.1	Allgemeines	53		
	2.3.2	Parametererregte Schwingungen einer Buchschneidemaschine .	56		
	2.3.3	Selbsterregte Schwingungen eines Wicklers	59		
	2.3.4	Instationäre Bewegungen bei Kranen	65		
		2.3.4.1 Anheben der Last vom Boden	65		
		2.3.4.2 Heben und Senken (Modell mit $n = 2$)	69		
		2.3.4.3 Heben und Senken (Modell mit $n = 4$)	77		
		2.3.4.4 Antriebsmoment bei Wippkranen	81		
	2.3.5	Diskrete Schwinger statt Kontinua (Balken- und Stabmodelle) .	84		
2.4			92		
	2.4.1	Allgemeines	92		
	2.4.2	Grundfrequenz von Schleifspindeln	94		
	2.4.3	Von 23 zu 5 Parametern (Fahrbewegung eines Brückenkrans)	99		
	2.4.4		103		
		2.4.4.1 Allgemeine Zusammenhänge	103		
		2.4.4.2 Biegeschwingungen			

	2.	.4.4.3 Längs- und Torsionsschwingungen	112
	2.	.4.4.4 Modellierung einer Getriebewelle	114
		Modellreduktion mit der Mittelungsmethode	
		.4.5.1 Einführung	
	2.	.4.5.2 Einfluß der Schwingungen auf die Reibungszahl	118
2.5		ng von Parametern des Gesamtsystems	
		ensitivitätsanalyse	
		.5.1.1 Allgemeine Zusammenhänge	
		.5.1.2 Beispiel: Torsionsschwingerkette	
		arameterermittlung aus gemessenen Eigenfrequenzen und Ei-	
		enformen	
		dentifikation eines Systems mit zwei Freiheitsgraden	
2.6		gradreduktion und Modellanpassung	
2.0		Frundlagen der Freiheitsgradreduktion	
		tatische und dynamische Kondensation GUYAN, RÖHRLE	
		Reduktion nach RIVIN und DI	
		Modale Reduktion und Eigenformapproximation	
		Vergleich der Reduktionsmethoden an einem Beispiel	
		Modale Synthese	
		Copplung von zwei Schwingerketten	
3		terwerte von Maschinenelementen und Baugruppen	
3.1		und Übertragungselemente von Torsionsschwingern	
3.2		erwerte einzelner Elemente	
		Sylinder- und Kegelelemente	
	3.2.2 Z	Susatzlängen und Nachgiebigkeitsfaktoren	167
	3.2.3 D	Orehsteifigkeiten von Kurbelwellen	170
	3.2.4 D	Dämpfungswerte von Torsionsschwingern	172
3.3	Wälzlage	er und Fugen	175
		allgemeine Zusammenhänge	
		Lugel- und Rollenlager	
	$3.3.3 ext{ } F$	ugen, Kontaktstellen, Gleit- und Wälzführungen	180
3.4	Getriebe,	, Kupplungen, Motoren	181
	3.4.1 Z	Zahnradgetriebe	181
		Berechnungsmodelle für nachgiebige Kupplungen	
	3.	.4.2.1 Allgemeine Zusammenhänge	185
	3.	.4.2.2 Berechnungsmodell für Elastomerkupplungen	187
	3.	.4.2.3 Nichtlineare Effekte bei biharmonischer Erregung	190
	3.4.3 A	synchronmotor	194
3.5	Dämpfur	ngskennwerte	197
4	Doion!s1	a mun demandication Analysis von Antrick court and a	205
4		e zur dynamischen Analyse von Antriebssystemen	
4.1		organg eines Antriebs mit Asynchronmotor	
4.2		g-Antriebsstrang	
4.3		gen im Antriebsstrang	
		Allgemeine Problemstellung	
		üfterantrieb	215

5.4.3

X Inhaltsverzeichnis

	5.4.4	Kompensation von Restschwingungen
	5.4.5	Resonanzdurchlauf
5.5	Zum E	Entwurf schwingungsarmer Mechanismen
	5.5.1	Gestellschwingungen und Massenausgleich
	5.5.2	Torsionsschwingungen und Leistungsausgleich
	5.5.3	HS-Profile bei Kurvengetrieben
		5.5.3.1 Theoretische Grundlagen
		5.5.3.2 Rastgetriebe
		5.5.3.3 Schrittgetriebe
	5.5.4	Beeinflussung des Erregerspektrums mehrgliedriger Koppelge-
		triebe
5.6	Optim	ale Stützenabstände angetriebener Balken
	5.6.1	Aufgabenstellung
	5.6.2	Gekoppelte Biege- und Torsionsschwinger
	5.6.3	Balken auf mehreren Stützen
5.7	Antrie	be von Vibrationsmaschinen
	5.7.1	Aufgabenstellung
	5.7.2	Schubkurbelgetriebe als Schwingungserreger
	5.7.3	Unwuchterreger und Selbstsynchronisation
		5.7.3.1 Zur historischen Entwicklung dieser Antriebsart 38
		5.7.3.2 Bedingungen für stabile Betriebszustände von Un-
		wuchtrotoren
		5.7.3.3 Beispiele für Vibrationsantriebe mit Selbstsynchronisa-
		tion
Häu	fig benu	ttzte Formelzeichen
Liteı	aturve	rzeichnis
Sach	verzeic	hnis