Table of Contents

Part I Trapped Ions and Cavity QED

Ge	eneration of Fock States in the One-Atom Maser	
Η.	Walther	3
1	Introduction	3
2	The One-Atom Maser and the Generation	
	of Fock-States Using Trapping States	4
3	Dynamical Preparation of Number States in a Cavity	7
4	Preparation of Fock States on Demand	9
5	Conclusion	12
Re	ferences	13
Co	pherent Manipulation of Two Trapped Ions	
wi	th Bichromatic Light	
Ε.	Solano, R.L. de Matos Filho, N. Zagury	14
1	Introduction	14
2	Dispersive Interaction	15
	2.1 The model	15
	2.2 Bell states	18
	2.3 Reliable teleportation	19
	2.4 Wigner function of the collective motion	21
3	Selective Interaction	22
4	Resonant Interaction	25
	4.1 Conditional vibrational displacement	25
	4.2 Motional Schrödinger's cat states	26
	4.3 Motional squeezed states	27
5	Conclusions	27
6	Acknowledgments	27
Re	ferences	28
Qu	antum Nondemolition Measurement	
an	d Quantum State Manipulation	
\mathbf{in}	Two Dimensional Trapped Ion	
W.	. Kaige, S. Maniscalco, A. Napoli, A. Messina	29

. 29
. 31
. 32
. 35
. 36
. 36
. 38
. 39
. 41
. 41

Phonon-Photon Translation with a Trapped Ion in a Cavity

E.	Massoni, M. Orszag	43
1	Introduction	43
2	The Model for a Phonon-Photon Translator	44
3	Information Transfer	46
4	Numerical Simulation	49
5	Discussion	52
6	The Model for an Ion Trap Laser Producing Transfer of Squeezing	53
7	Semiclassical Aproximation	56
8	Numerical Results	58
Re	ferences	61

Part II Quantum Interference, Entanglement, Decoherence and Quantum Computing

Decoherence, Pointer Engineering and Quantum State Protection

A.F	R.R.	Carvalho, P. Milman, R.L. de Matos Filho, L. Davidovich	65
1	Intro	oduction	65
2	Stra	tegy for Quantum State Protection	66
3	App	lication to a Trapped Ion	67
	3.1	Hamiltonian of the system	67
	3.2	Master equation for the center-of-mass motion	68
	3.3	Effect of random fields	70
	3.4	Protection of superpositions of Fock states	72
	3.5	Protection of a qubit	73
	3.6	Protection of approximate phase eigenstates	74
	3.7	Superpositions of coherent states	74
	3.8	Protection of squeezed states	76
4	Con	clusion	76
Ref	erenc	es	78

Hig	gh Efficiency in Detection of Photonic Qubits	
K.I	M. Gheri, C. Saavedra	80
1	Introduction	80
2	Mode Structure of a System of Two-Cavities	81
3	Photon Wavepacket Absorption	84
4	Generation of Photonic Qubits	
	with Three-Level Λ Atoms	87
5	Summary and Further Applications	92
Ref	ferences	94
Ma	acroscopic Entanglement and Relative Phase	
G.	Nienhuis	95
1	Introduction	95
2	Single Histories with Arbitrary Detection Efficiency	96
	2.1 Perfect detection efficiency	96
	2.2 Imperfect detection efficiency	98
3	Single Boson Mode	98
	3.1 Arbitrary state	98
	3.2 Fixed amplitude	.00
4	Master Equation for Two Boson Modes 1	.01
	4.1 Two representations	.01
	4.2 Correlations created by observation	.02
5	Initial States with Fixed Amplitudes 1	.03
	5.1 Separation of total number and relative phase	.03
	5.2 Coherent states	.05
	5.3 Uniform phase distribution 1	.05
6	Conclusions 1	.08
Ref	ferences 1	.09
D -		
De	A Maia Note D A D Debuit	10
<i>Г</i> . <i>Е</i>	In Maia Nello, D.A.R. Dallou	10
1	Dynamical Casimin Effect	14
2 2	Decoherence and the Casimir Effect	16
3 4	Conducion 1	.10 .00
4 Dof	Concrusion	.22
nei	lefences	23
Co	ntrol of Cold Atomic Collisions by Multiparticle Entanglement	
and	d a Modified Vacuum in Cavity QED	0-
J.1.	. Kim, K.B.B. Santos, P. Nussenzweig 1	.25
1	Introduction	.25
2	Cold Collisions and Cavity QED 1	.26
	2.1 Radiative escape collisions 1	.26

	2.2	Cavity QED 128
3	Colli	sional Dynamics in a Cavity 129
	3.1	Multiparticle entanglement
	3.2	Control of cold collisions by a modified vacuum $\hdots\dots\dots\dots\dots131$
	3.3	Collective decay rate
	3.4	Trap-loss probabilities
	3.5	Orders of magnitude
4	Cond	elusion
Ref	erenc	es

Decoherence Evolution of a Harmonic Oscillator

J.C	. Rete	amal
1	Intro	duction
2	Stabl	le Quantum States
3	The	Onset of Unstabilities
4	Anal	ytical Solutions for the Linear Entropy
	4.1	A reservoir at a finite temperature
	4.2	Finite temperature entropy for a coherent state
	4.3	Finite temperature entropy for a Schrodinger cat 153
5	Conc	lusions
6	Ackn	owledgments
Ref	erence	es

Part III Non-linear Optics, Matter Waves

Atomic Squeezing and Entanglement

fro	m Bose–Einstein Condensates	
Η.	Pu, M.G. Moore, P. Meystre	161
1	Introduction	161
2	Entangled Atomic Beams	162
3	Dicke States	167
4	Atom-Photon Entanglement	171
5	Conclusion	175
Ref	erences	176

Atomic Coherence Effects in Doppler-Broadened Three-Level Systems with Standing-Wave Drive

тт	Thee-Devel Systems with Standing-Wave Drive		
F.	Silva, J. Mompart, V. Ahufinger, R. Corbalán	177	
1	Introduction	177	
2	Semiclassical Density Matrix Analysis	180	
3	Dressed-Atom Analysis	182	
4	Electromagnetically Induced Transparency	185	

5	Amplification Without Inversion 1	.88
Ref	ferences 1	.93
Fre	equency Up-Conversion to the Vacuum Ultra-Violet	
\mathbf{in}	Coherently Prepared Media	
J.F	P. Marangos, I. Kuçukkara, M. Anscombe 1	95
1	Introduction	.95
2	Review of Previous Work on EIT Enhanced Non-linear Mixing 1	.99
3	Theoretical Treatment of EIT Enhanced Four-Wave Mixing in Kr 2	201
4	Experimental Investgation of EIT Enhanced Four-Wave Mixing in Kr. 2	203
	4.1 Experimental system and results	203
	4.2 Discussion	206
5	Further Developments and Conclusion	209
Ref	ferences 2	210

Optical Lattice Dynamics and Scattering Processes Resulting from Dipole-Dipole Interaction

Α.	Guzmán, J. Zapata	212
1	Introduction	212
2	Atomic States in Optical Lattices	213
3	The Dipole-Dipole Interaction in an Optical Lattice	217
4	Hopping Within the Wannier Representation	219
5	Atom-Atom Diffraction in 1D Optical Lattices	220
6	Summary and Conclusions	225
Re	ferences	225

Part IV Quantum Optics and Applications

Time Delay and Tunneling

H.M	. Nu	ssenzweig	229
1]	Intro	duction	229
2 7	The	Eisenbud-Wigner Time Delay 2	229
3 [Tunr	eling Time as Group Delay	230
ć	3.1	Critique of tunneling time as group delay	231
4 7	The	Larmor Times	231
5 \$	Stati	onary Dwell Time	232
Ę	5.1	Remarks	233
6 (Othe	r Approaches to Tunneling Time	233
(6.1	Modulation of the barrier or of the incident wave	233
(6.2	Conditional dwell time	233
(6.3	Path integrals	234
6	C A	Chitique of the "Formeron" oppression	194

7	Average Wave Packet Dwell Time
8	One-Dimensional Quantum Scattering Theory
	8.1 The time delay matrix
	8.2 New basis functions
9	The Average One-Dimensional Wave Packet Dwell Time
	9.1 Average one-dimensional dwell time for a symmetric potential 239
10	Rectangular Potential
	10.1 Average dwell time in tunneling
11	Main Problems with Previous Treatments
12	Ten Good Features of the Average Dwell Time
Ref	erences

Giant Intensity-Intensity Correlations and Quantum Interference in a Driven Three-Level Atom

and	ւզս	antum interference in a Driven Three-Level Atom	
<i>S.</i> 2	Swain	<i>b, Z. Ficek</i>	244
1	Intro	oduction	244
2	The	Three-Level Model: Both Transitions Excited	246
	2.1	Second-order correlation functions	247
	2.2	Distinguishable photons	249
	2.3	Indistinguishable photons	250
	2.4	Interpretation of the results	251
3	Sing	le-Transition Excitation	253
	3.1	Superposition dressed states	255
4	Cone	clusions	259
Ref	erenc	es	259

A Cavity QED Test of Quantum Mechanics

Z.	Ficek, S. Swain	62
1	Introduction	62
2	The Eigenstructure of the Driven Two-Level Atom in a Cavity 2	64
3	Master Equation of the System	66
4	The Autler-Townes Absorption Spectrum	68
	4.1 Population of the undriven level	68
	4.2 Population of the dressed states	70
5	Autler-Townes Spectra	71
	5.1 Fixed number of photons	71
	5.2 Numerical results	73
6	Summary	77
Re	ferences	77

The Method of Quantum Jumps and Quantum White

W.	on Waldenfels	279
1	Introduction	279

2	The Master Equation	281
3	The Quantum Jump Method	281
4	Quantum White Noise Integrals	285
5	The Two Level Atom	286
6	The Oscillator in an Atomic Heat Bath	290
Ref	erences	293

Quantum Orbits in Intense-Laser Atom Physics

R.	Kopold, W. Becker	94
1	Introduction	94
2	The S Matrix for Ionization	96
	2.1 General formalism	96
	2.2 Approximation by quantum orbits	99
	2.3 Quantum orbits and the simple-man model	00
3	Results	02
	3.1 Spectra for linear polarization	02
	3.2 Spectra for elliptical polarization	02
	3.3 Angular distributions for elliptical polarization	03
4	Comparison to Experimental Data and Conclusions	07
Ref	ferences	08

Micromaser Dynamics

Beyond the Rotating-Wave Approximation

F.	De Zela
1	Introduction and Background 310
2	The Micromaser
3	The Rotating and the Counter-rotating Wave Approximations 321
4	Diagonalization of the Rabi Hamiltonian by Continued Fractions 323
5	Transition Probabilities
6	The Steady-State Photon Distribution
7	The Atomic Inversion
8	Trapping States
9	Conclusions
Re	ferences

What Is a Quantized Mode of a Leaky Cavity?

S.M	[. Du	tra, G. Nienhuis	338
1	Intro	oduction	338
2	Ope	n Systems in Quantum Mechanics	339
	2.1	Quantum dissipation and the classical limit	340
3	Wha	t Is a Mode of a Leaky Cavity?	342
	3.1	The classical answer	342
	3.2	Quasimodes in the quantum theory	344

4	A Simple Model of a Leaky Cavity	346
5	Fox-Li Modes as Natural Modes	347
	5.1 Sturm-Liouville with a Twist	348
6	Quantum Theory	350
7	Conclusions	351
Ref	erences	352

The Quantum Jumps Approach for Infinitely Many States

D.	Spehr	ner, J. Bellissard
1	Intro	oduction
2	The	Model
	2.1	The stochastic scheme
	2.2	Examples
3	Case	e of Infinitely Many States
4	Equ	ivalence with the Master Equation
	4.1	Decomposition of the generator \mathcal{L}
		into a jump and a damping parts 366
	4.2	Average over quantum trajectories
	4.3	Comments
5	Stoc	hastic Hamiltonians
6	Con	parison with Other Stochastic Schemes
	6.1	Quantum jump schemes
	6.2	Quantum diffusion schemes
	6.3	Comparison with the model of Sect. 2
7	Con	clusion
Re	ferenc	es

Part V Short Contributions

Co	nerent Population Trapping and Resonance Fluorescence	
\mathbf{in}	a Closed Four-Level System	
М.	D. Ladrón de Guevara	79
1	Introduction	79
2	Model	30
3	Results	30
Ref	erences	33
-		

Dynamics of Bose–Einstein Condensation for Negative Scattering Length

for Regative Scattering Length	
V.S. Filho, A. Gammal, L. Tomio, T. Frederico	
References	

Quantum Gates with a Selective Interaction

E. S	olano,	M.	Free	ınça	S	$interim}$	os,	P.	1	Ail	lm	an		 	 • •	•				•	 •	 •	 389
Refe	rences								•				 	 • •	 					•		 •	 393

Measuring Entanglement Through the Wigner Function

М.	França Santos, L. Davidovich	394
1	Introduction	394
2	Entanglement in the Two-Mode Wigner Function	395
3	Conclusions	397
Ref	erences	397

Reflection of a Slow Atom by a Cavity

Α.	Delgado, L. Roa, C. Saavedra	399
1	Introduction	399
2	The Model	400
3	Summary	404
Re	ferences	405