
Preface

Proof theory has long been established as a basic discipline of mathematical
logic. It has recently become increasingly relevant to computer science. The de-
ductive apparatus provided by proof theory has proved useful for metatheoretical
purposes as well as for practical applications. Thus it seemed to us most natural
to bring researchers together to assess both the role proof theory already plays
in computer science and the role it might play in the future.

The form of a Dagstuhl seminar is most suitable for purposes like this, as
Schloß Dagstuhl provides a very convenient and stimulating environment to di-
scuss new ideas and developments. To accompany the conference with a procee-
dings volume appeared to us equally appropriate. Such a volume not only fixes
basic results of the subject and makes them available to a broader audience, but
also signals to the scientific community that Proof Theory in Computer Science
(PTCS) is a major research branch within the wider field of logic in computer
science.

Therefore everybody invited to the Dagstuhl seminar was also invited to
submit a paper. However, preparation and acceptance of a paper for the volume
was not a precondition of participating at the conference, since the idea of a
Dagstuhl seminar as a forum for spontaneous and open discussions should be
kept. Our idea was that the papers in this volume should be suitable as starting
points for such discussions by presenting fundamental results which merit their
publication in the Springer LNCS series. The quality and variety of the papers
received and accepted rendered this plan fully justified. They are a state-of-the-
art sample of proof-theoretic methods and techniques applied within computer
science.

In our opinion PTCS focuses on the impact proof theory has or should have
on computer science, in particular with respect to programming. Major divisions
of PTCS, as represented in this volume, are the following:
1. The proofs as programs paradigm in general
2. Typed and untyped systems related to functional programming
3. Proof-theoretic approaches to logic programming
4. Proof-theoretic ways of dealing with computational complexity
5. Proof-theoretic semantics of languages for specification and programming
6. Foundational issues

This list is not intended to be exclusive. For example, there is undoubtedly
some overlap between Automated Deduction and PTCS. However, since Auto-
mated Deduction is already a well-established subdiscipline of logic in computer
science with its own research programs, many of which are not related to proof
theory, we did not include it as a core subject of PTCS.

In the following, we briefly address the topics of PTCS mentioned and indi-
cate how they are exemplified in the contributions to this volume.



VI Preface

1. The most intrinsic relationship between proof theory and computer science,
if proof theory is understood as the theory of formal proofs and computer science
as the theory of computing, is provided by the fact that in certain formalisms
proofs can be evaluated (reduced) to normal forms. This means that proofs can
be viewed as representing a (not necessarily deterministic) program for their own
evaluation. In particular contexts they allow one to extract valuable information,
which may be given, e.g., in the form of particular terms. The idea of considering
proofs as programs, which in the context of the typed λ-calculus is known as
the Curry-Howard-correspondence, is a research program touched upon by most
contributions to this volume. The papers by Baaz & Leitsch and by Berger
are directly devoted to it. Baaz & Leitsch study the relative complexity of two
cut elimination methods and show that they are intrinsically different. Berger
investigates a proof of transfinite induction given by Gentzen in order to extract
algorithms for function hierarchies from it.

2. Functional programming has always been at the center of interest of proof
theory, as it is based on the λ-calculus. Extensions of the typed λ-calculus, in
particular type theories, lead to powerful frameworks suitable for the formaliza-
tion of large parts of mathematics. The paper by Alt & Artemov develops a
reflective extension of the typed λ-calculus which internalizes its own derivati-
ons as terms. Dybjer & Setzer show how indexed forms of inductive-recursive
definitions, which would enable a certain kind of generic programming, can be
added to Martin-Löf type theory. The main proof-theoretic paradigm competing
with type theory is based on type-free applicative theories and extensions thereof
within Feferman’s general program of explicit mathematics. In his contribution,
Studer uses this framework in an analysis of a fragment of Java. In particular,
he manages to proceed without impredicative assumptions, thus supporting a
general conjecture by Feferman.

3. Logic programming, which uses the Horn clause fragment of first-order logic
as a programming language, is a natural topic of PTCS. Originally it was not
developed within a proof-theoretic framework, and its theoretical background is
often described in model-theoretic terms. However, it has turned out that a proof-
theoretic treatment of logic programming is both nearer to the programmer’s way
of thinking and conceptually and technically very natural. It also leads to strong
extensions, including typed ones which combine features of functional and logic
programming. In the present volume, Elbl uses proof-theoretic techniques to give
“metalogical” operators in logic programming an appropriate rendering.

4. The machine-independent characterization of classes of computational com-
plexity not involving explicit bounds has recently gained much attention in proof
theory. One such approach, relying on higher-type functionals, is used in Aehlig
et al.’s paper to characterize the parallel complexity class NC. Another proof-
theoretic method based on term rewriting is applied by Oitavem in her charac-
terization of PSPACE and is compared and contrasted with other implicit cha-
racterizations of this class. Gordeew asks the fundamental question of whether
functional analysis may serve as an alternative framework in certain subjects
of PTCS. He suggests that non-discrete methods may provide powerful tools



Preface VII

for dealing with certain computational problems, in particular those concerning
polynomial-time computability.

5. Besides the systematic topics mentioned, the study of specific languages is
an important aspect of PTCS. In his contribution, Schmitt develops and studies
a language of iterate logic as the logical basis of certain specification and mo-
deling languages. Studer gives a denotational semantics of a fragment of Java.
By interpreting Featherweight Java in a proof-theoretically specified language
he shows that there is a direct proof-theoretic sense of denotational semantics
which differs both from model-theoretic and from domain-theoretic approaches.
This shows that the idea of proof-theoretic semantics discussed in certain areas
of philosophical and mathematical logic, is becoming fruitful for PTCS as well.

6. Finally, two papers concern foundational aspects of languages. Baaz &
Fermüller show that in formalizing identity, it makes a significant difference
for uniform provability, whether identity is formulated by means of axioms or by
means of a schema. The paper by Došen & Petrić presents a coherence result for
categories which they call “sesquicartesian”, contributing new insights into the
equality of arrows (and therefore into the equality of proofs and computations)
and its decidability.

We thank the authors and reviewers for their contributions and efforts. We
are grateful to the Schloß Dagstuhl conference and research center for acting as
our host, and to Springer-Verlag for publishing these proceedings in their LNCS
series.

The second and the third editor would like to add that it was Reinhard
Kahle’s idea to organize a Dagstuhl seminar on PTCS, and that he had the
major share in preparing the conference and editing this volume. He would have
been the first editor even if his name had not been the first alphabetically.

October 2001 Reinhard Kahle
Peter Schroeder-Heister

Robert Stärk



VIII Program Committee

Program Committee

Arnold Beckmann (Münster)
Roy Dyckhoff (St. Andrews)
Rajeev Goré (Canberra)
Gerhard Jäger (Bern)
Reinhard Kahle (Tübingen)
Dale Miller (Penn State)
Tobias Nipkow (München)
Frank Pfenning (Pittsburgh)
Peter Schroeder-Heister (Tübingen)
Robert Stärk (Zürich)

Additional Reviewers

Steve Bellantoni (Toronto)
Norman Danner (Los Angeles)
Lew Gordeew (Tübingen)
Peter Hancock (Edinburgh)
Jörg Hudelmaier (Tübingen)
Jim Lambek (Montreal)
Daniel Leivant (Bloomington)
Jean-Yves Marion (Nancy)
Ralph Matthes (München)
Hans Jürgen Ohlbach (München)
Christine Paulin-Mohring (Paris)
Thomas Strahm (Bern)


