Contents

Preface xi
Acknowledgments xv

PART 1: Background

1. What Does It Mean to Model Hypothesized Causal Processes With Nonexperimental Data? 3
 Methods for Structural Equation Analyses 9
 Overview 12

2. History and Logic of Structural Equation Modeling 15
 History 15
 Sewell Wright 15
 Path Analysis in the Social Sciences 17
 Unidirectional Flow Models 17
 Moving Beyond Path Analysis in Structural Equation Modeling Research 20
 Why Use Structural Equation Modeling Techniques? 20
PART 2: Basic Approaches to Modeling With Single Observed Measures of Theoretical Variables

3. The Basics: Path Analysis and Partitioning of Variance
 - Logic of Correlations and Covariances 30
 - Decomposing Relationships Between Variables
 - Into Causal and Noncausal Components 35
 - Direct Causal Effects 39
 - Indirect Causal Effects 40
 - Noncausal Relationships Due to Shared Antecedents 41
 - Noncausal Unanalyzed Prior Association Relationships 42
 - Approaches for Decomposing Effects 44
 - Determining Degrees of Freedom of Models 48
 - Presenting Partial Regression and Partial
 - Correlation as Path Models 49
 - Partial Regression 49
 - Partial Correlation 51
 - Peer Popularity and Academic Achievement:
 - An Illustration 53

4. Effects of Collinearity on Regression and Path Analysis 60
 - Regression and Collinearity 62
 - Illustrating Effects of Collinearity 66
 - Confidence Intervals for Correlations 70
 - Ridge or Reduced Variance Regression 73

5. Effects of Random and Nonrandom Error on Path Models 79
 - Measurement Error 79
 - Background 79
 - Specifying Relationships Between Theoretical Variables and Measures 81
 - Random Measurement Error 84
 - Nonrandom Error 87
 - Method Variance and Multitrait-Multimethod Models 88
 - Method Variance 89
 - Additive Multitrait-Multimethod Models 92
 - Nonadditive Multitrait-Multimethod Models 96
6. Recursive and Longitudinal Models: Where Causality Goes in More Than One Direction and Where Data Are Collected Over Time

Models With Multidirectional Paths
- **Logic of Nonrecursive Models**
- **Estimation of Nonrecursive Models**

Longitudinal Models
- **Logic Underlying Longitudinal Models**
- **Terminology of Panel Models**
- **Identification**
- **Stability**
- **Temporal Lags in Panel Models**
- **Growth Across Time in Panel Models**
- **Stability of Causal Processes**
- **Effects of Excluded Variables**

Correlation and Regression Approaches for Analyzing Panel Data

Summary

PART 3: Factor Analysis and Path Modeling

7. Introducing the Logic of Factor Analysis and Multiple Indicators to Path Modeling

Factor Analysis
- **Logic of Factor Analysis**
- **Exploratory Factor Analysis**
- **Confirmatory Factor Analysis**
- **Use of Confirmatory Factor Analysis Techniques**

Constraining Relations of Observed Measures With Factors

Confirmatory Factor Analysis and Method Factors
- **The Basic Confirmatory Factor Analysis Path Model for Multitrait-Multimethod Matrices**
- **Confirmatory Factor Analysis Approaches to Multitrait-Multimethod Matrices and Model Identification**
PART 4: Latent Variable Structural Equation Models

8. Putting It All Together: Latent Variable Structural Equation Modeling
 - The Basic Latent Variable Structural Equation Model
 - The Measurement Model
 - Reference Indicators
 - The Structural Model
 - An Illustration of Structural Equation Models
 - Model Specification
 - Identification
 - Equations and Matrices
 - Basic Ideas Underlying Fit/Significance Testing
 - Individual Parameter Significance
 - Model Fitting
 - The Measurement Model
 - The Structural Model
 - The Variance/Covariance Matrices

 - Example 1: A Longitudinal Path Model
 - Example 2: A Nonrecursive Multiple-Indicator Model
 - Example 3: A Longitudinal Multiple-Indicator Panel Model

10. Logic of Alternative Models and Significance Tests
 - Nested Models
 - Tests of Overall Model Fit
 - Absolute Indexes
 - Relative Indexes
 - Adjusted Indexes
 - Fit Indexes for Comparing Non-Nested Models
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting Up Nested Models</td>
<td>247</td>
</tr>
<tr>
<td>Why Models May Not Fit</td>
<td>249</td>
</tr>
<tr>
<td>Illustrating Fit Tests</td>
<td>250</td>
</tr>
<tr>
<td>11. Variations on the Basic Latent Variable Structural Equation Model</td>
<td>255</td>
</tr>
<tr>
<td>Analyzing Structural Equation Models When Multiple Populations Are Available</td>
<td>257</td>
</tr>
<tr>
<td>Overview of Methods</td>
<td>257</td>
</tr>
<tr>
<td>Comparing Processes Across Samples</td>
<td>259</td>
</tr>
<tr>
<td>Testing Plausibility of Contraints</td>
<td>261</td>
</tr>
<tr>
<td>Constraints in the Measurement Model</td>
<td>261</td>
</tr>
<tr>
<td>Constraints in the Structural Model</td>
<td>262</td>
</tr>
<tr>
<td>When and How to Impose Equality Constraints</td>
<td>262</td>
</tr>
<tr>
<td>Second-Order Factor Models</td>
<td>265</td>
</tr>
<tr>
<td>All-Y Models</td>
<td>268</td>
</tr>
<tr>
<td>12. Wrapping Up</td>
<td>271</td>
</tr>
<tr>
<td>Criticisms of Structural Equation Modeling Approaches</td>
<td>272</td>
</tr>
<tr>
<td>“Internal” Critics</td>
<td>272</td>
</tr>
<tr>
<td>“External” Critics</td>
<td>275</td>
</tr>
<tr>
<td>Emerging Criticisms</td>
<td>277</td>
</tr>
<tr>
<td>Post Hoc Model Modification</td>
<td>278</td>
</tr>
<tr>
<td>Topics Not Covered</td>
<td>280</td>
</tr>
<tr>
<td>Power Analysis</td>
<td>280</td>
</tr>
<tr>
<td>Nonlinear Relationships</td>
<td>280</td>
</tr>
<tr>
<td>Alternative Estimation Techniques</td>
<td>281</td>
</tr>
<tr>
<td>Analysis of Noncontinuous Variables</td>
<td>282</td>
</tr>
<tr>
<td>Adding Analysis of Means</td>
<td>282</td>
</tr>
<tr>
<td>Multilevel Structural Equation Modeling</td>
<td>282</td>
</tr>
<tr>
<td>Writing Up Papers Containing Structural Equation Modeling Analysis</td>
<td>283</td>
</tr>
<tr>
<td>Selecting a Computer Program to Do Latent Variable Structural Equation Modeling</td>
<td>283</td>
</tr>
</tbody>
</table>

Appendix A: A Brief Introduction to Matrix Algebra and Structural Equation Modeling

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Is a Matrix?</td>
<td>285</td>
</tr>
<tr>
<td>Matrix Operations</td>
<td>288</td>
</tr>
<tr>
<td>Inverting Matrices</td>
<td>291</td>
</tr>
</tbody>
</table>