Inhaltsverzeichnis

1. Die Input-Output-Tabelle 1

beziehungen: Ein Beispiel 1

	1.2.2	Die Input-Output-Tabelle als Kreislaufschema 18	
	1.2.3	Aufbau einer Input-Output-Tabelle 19	
	1.3 Ex	kurs: Zur Geschichte der Input-Output-Analyse 22	
	1.4 Ko	nzeptionelle Probleme bei der Tabellenerstellung 26	
	1.4.1	Räumliche und zeitliche Abgrenzung 27	
	1.4.2	Prinzipien der Sektorenbildung 28	
	1.4.3	Make- und Usematrizen 32	
	1.4.4	Die Darstellung der Importe in Input-Output-	
		Tabellen 43	
	1.4.5	Dienstleistungen 46	
	1.4.6	Erfassung und Bewertung der Transaktionen 51	
	1.4.7	Volkswirtschaftliche Gesamtrechnung und Input-	
		Output-Tabellen 54	
2.	2. Statische Input-Output-Modelle 61		
	2.1 Da	s klassische statische Input-Output-Modell	
		eontief-Modell) 61	
	2.1.1	Formulierung des klassischen Leontief-Modells 61	
		Lösbarkeitsaussagen zum klassischen	
		Leontief-Modell 68	
	2.1.3	Die Koeffizienten im klassischen Input-Output-	
		Modell 72	
	2.1.4	Erweiterungen des Leontief-Modells 79	
		s Problem der Mehrfachklassifikation 96	
	2.2.1	Ein verallgemeinertes Input-Output-Modell 96	
		Hierarchische Struktur der Input-Output-Modelle 103	
	2.2.3	Bildung und Verbindung von Teil-Input-Output-	
		Tabellen 109	
	2.2.4	Ein praktikables Konzept zur Erstellung von	
		Input-Output-Tabellen 112	
	2.2.5		

nach Kossov 132

Analyse volkswirtschaftlicher Verflechtungs-

Die Input-Output-Tabelle als Kreislaufschema 9 1.2.1 Theoretische Grundlagen der Kreislaufanalyse VIII Inhaltsverzeichnis

3.	Variabilität der Inputkoeffizienten in Input-Output-Modellen	137
	3.1 Zur Hypothese der Konstanz der Inputkoeffizienten 137	
	3.1.1 Direkte Tests 137	
	3.1.2 Indirekte Tests 139	
	3.1.3 Ein Beispiel 140	
	3.2 Die Ursachen für die Veränderung der	
	Inputkoeffizienten 143	
	3.3 Methoden zur Aktualisierung der Inputkoeffizienten 145	
	3.3.1 Verfahren des RAS-Typs 146	
	3.3.2 Verfahren der Abstandsminimierung 151	
	3.4 Zur Ermittlung von (sekundären) Inputfunktionen 154	
	3.4.1 Einige spezielle Inputfunktionen 154	
	3.4.2 Methoden zur Ermittlung der Inputfunktionen 157	
	3.5 Ein Überblick über die Theorie des statischen Input-	
	Output-Modells mit nichtlinearen Inputfunktionen 159	
	3.5.1 Lösbarkeitsbegriffe 159	
	3.5.2 Die Minimaleigenschaft 161	
	3.5.3 Zusammenfassung wichtiger qualitativer Aussagen	162
	3.6 Verfahren zur Lösung von statischen	
	volkswirtschaftlichen Input-Output-Modellen mit	
	nichtlinearen Inputfunktionen 167	
	3.6.1 Verfahren der sukzessiven Approximation 167	
	3.6.2 Modifizierte Verfahren der sukzessiven	
	Approximation 173	
	3.6.3 Gradientenverfahren 177	
4.	Dynamische Input-Output-Modelle 185	
	4.1 Problemstellung und Klassifikation 185	
	4.1.1 Problem des Übergangs vom statischen zum	
	dynamischen Modell 185	
	4.1.2 Klassifikation von dynamischen Input-Output-	
	Modellen 187	
	4.2 Das klassische dynamische Input-Output-Modell	
	(Grundmodell) 189	
	4.2.1 Modellhypothesen und Grundgleichungssystem 189	
	4.2.2 Lösung und Lösungsanalyse 191	
	4.2.3 Wachstum und Stabilität der Lösung 197	
	4.2.4 Numerisches Beispiel 204	
	4.2.5 Weitere Ansätze für das Grundmodell 208	
	4.3 Dynamische Input-Output-Modelle und Optimierung 21	2
	4.3.1 Klassischer Optimierungsansatz mit Einbindung	
	der primären Inputs, duales Aufgabenpaar 212	
	4.3.2 Dynamische Input-Output-Modelle und das	
	Turnpikeproblem 218	

	Ausgewählte Anwendungen und Erweiterungen		
đ	ler Inpi	ut-Output-Modellierung 227	
5	.1 Fe	hler- und Sensitivitätsanalyse bei	
	Inj	put-Output-Modellen 227	
	5.1.1	Sensitivität und Instabilität 227	
	5.1.2	Fehlerarten 230	
	5.1.3	Absoluter und relativer Fehler 231	
	5.1.4	Erfassung der einzelnen Fehlerarten 232	
5	.2 Re	gionale Input-Output-Modelle 241	
	5.2.1	Das interregionale Input-Output-Modell (IRIO)	
		von Isard 241	
	5.2.2	Das multiregionale Input-Output-Modell (MRIO) 244	
	5.2.3	Das Leontief-Modell hierarchischer Regionen	
		(Balanced regional model) 248	
5	.3 Me	ehrebenenanalyse 249	
		Materialbilanz 250	
	5.3.2	Energiebilanz 252	
	5.3.3	Arbeitszeitgehalt des Outputs 253	
	5.3.4	Arbeitswerte 255	
	5.3.5	Produktionspreise 258	
5	.4 Inp	out-Output-Modelle und technischer Fortschritt 265	
		Ein früher Versuch: Lenin 1893 266	
	5.4.2	Ein dynamisches Simulationsmodell mit	
		technischem Fortschritt 272	
5	.5 Eir	n nichtlineares dynamisches Input-Output-Modell 277	
	5.5.1	Das ursprüngliche LSD-Modell 277	
	5.5.2	Ein modifiziertes LSD-Modell 279	
	5.5.3	Die Berechnung der Modellparameter 282	
	5.5.4	Simulationsergebnisse 293	
5.	.6 An	wendungen im ökologischen Bereich 303	
	5.6.1	Von der Energiebilanz zum Input-Output-Modell	
		in Energieeinheiten 303	
	5.6.2	Die Verknüpfung von Input-Output-Daten mit	
		ökologischen Indikatoren 309	
Anh	ang A	315	

Literatur 358

Anhang D

Anhang E

Anhang B 322 Anhang C

345

347

349