Contents

Lis	t of Tables and Figures	vii
No	tes on Contributors	ix
1	Models, Methodologies, and Metaphors on the Move Andreas Wimmer	1
Pa	rt I Chaos and Order in Climate Change	
2	Climate Change: Complexity, Chaos and Order Paul Higgins	37
3	Chaos in Social Systems: Assessment and Relevance L. Douglas Kiel	51
4	Economics, Chaos and Environmental Complexity Hans-Walter Lorenz	59
Pa	rt II Genetic Variation in Evolution	
5	The Topology of the Possible Walter Fontana	67
6	Neutrality as a Paradigm of Change Rudolf Stichweh	85
7	Using Evolutionary Analogies in Social Science: Two Case Studies Edmund Chattoe	89
Paı	rt III Economics of Continuity: Path Dependency	
8	The Grip of History and the Scope for Novelty: Some Results and Open Questions on Path Dependence in Economic Processes Carolina Castaldi and Giovanni Dosi	99
9	Analyzing Path Dependence: Lessons from the Social Sciences James Mahoney	129
10	Path Dependence and Historical Contingency in Biology Eörs Szathmáry	140

Index

Dart	IV	Institutional Inert	ia
Part	1 V	msutuuonai met	.ia

11	The New Institutional Economics: Can It Deliver for Change and Development? Jeffrey B. Nugent	161
12	Institutions, Politics and Culture: A Case for 'Old' Institutionalism in the Study of Historical Change John Harriss	177
13	Exporting Metaphors, Concepts and Methods from the Natural Sciences to the Social Sciences and <i>vice versa</i> Raghavendra Gadagkar	187
Par	t V The Multilinear Modernization of Societies	
14	Multiple Modernities in the Framework of a Comparative Evolutionary Perspective Samuel N. Eisenstadt	199
15	On Modernity and Wellbeing Oded Stark	219
16	Multiplicity in Non-Linear Systems Somdatta Sinha	222
Par	t VI Constellations of Contingency: Political History	
17	Historical-Institutionalism in Political Science and the Problem of Change Ellen M. Immergut	237
18	Social Science and History: How Predictable Is Political Behavior? <i>Roger D. Congleton</i>	260
19	Reconstructing Change in Historical Systems: Are There Commonalties Between Evolutionary Biology and the Humanities? Joel Cracraft	270
20	History, Uncertainty, and Disciplinary Difference: Concluding Observations by a Social Scientist Reinhart Kössler	285
		303

List of Tables and Figures

Tab	les
-----	-----

10.1	Examples of social learning	147
10.2	The major transitions in evolution	150
15.1		220
15.2		220
Figu	res	
1.1	A basic transition probability matrix	10
1.2	=	11
1.3	Transformation	12
1.4	History I: event chains	13
1.5	History II: path dependency	14
2.1	Schematic bifurcation diagram for thermohaline	
	circulation as measured by North Atlantic Deep	
	Water (NADW) production in Sverdrups	42
2.2	Equilibrium results of a simple climate model	
	under different forcing scenarios	43
2.3	Model response of the coupled atmosphere-biosphere	
	system to vegetation perturbations for the Sahel and	
	starting from a vegetation distribution for West Africa	
	close to today's	44
2.4	Sensitivity of modelled biome distributions to	
	initial vegetation	45
5.1	The folding of RNA sequences into shapes as a proxy	
	of a genotype-phenotype map	68
5.2	RNA shape	70
5.3	Epistasis	72
5.4	Sequence space for sequences of length 4 over the	
	binary alphabet {0,1}	73
5.5	Neutral networks and shape space topology	75
5.6	A: An example of a discontinuous shape transformation	
	RNA; B: Punctuation in evolving RNA populations	78
8.1	The Fujiyama single-peaked fitness landscape	104
8.2	A fitness landscape with several local maxima peaks	
	(Schwefel's function)	105
8.3	A non-linear transition function that implies	
	multiple steady states	110

viii List of Tables and Figures

9.1	Illustration of contingency in self-reinforcing sequence	134
10.1	The formose 'reaction', which is, in fact, a complex	
	network of autocatalytic sugar formation. (a) The	
	'spontaneous generation' of the autocatalytic	
	seed is a very slow process; and (b) the autocatalytic	
	core of the network. Each circle represents a group	
	with one carbon atom	144
10.2	DNA methylation as a chromatin marking system	146
10.3	Memes and Lamarckian inheritance. (a) The	
	Weissmanist segregation of soma and germ line;	
	(b) transfer of memes passes through the performance	
	level, which is mostly absent in the molecular world; and	
	(c) in most cases a meme becomes multiplied by the	
	interactions of two memes	148
10.4	Schematic evolution of ECP and EDN proteins	150
10.5	The radiation of Mexican salamanders	154
16.1	Processes involved in the evolution of a complex system	224
16.2	Structure and dynamical behaviour: (a) logistic; and	
	(b) exponential maps	226
16.3	Structure and dynamics of Lorenz system	227
16.4	Dynamics of (a) logistic; and (b) exponential maps	
	under external perturbation	228
16.5	Dynamics of H and P when external perturbation is	
	applied to (a) H, (b) P, and (c) to both H and P	229
16.6	Paradigms of evolutionary change	230
17.1	First chamber real and counterfactual results, 1911–94	250
18.1	How predictable?	263
19.1	A simplified causal nexus for the origin of a species	278