
1

Research in Evolutionary Computation

This work tries to lay the groundwork for experimental research in evolution-
ary computation. We claim that experiments are necessary—a purely theo-
retical approach cannot be seen as a reasonable alternative. Our approach is
related to the discipline of experimental algorithmics , which provides methods
to improve the quality of experimental research. However, many approaches
from experimental algorithmics are based on Popperian paradigms:

1. No experiment without theory.
2. Theories should be falsifiable.

Following Hacking (1983) and Mayo (1996), we argue that:

1∗. An experiment can have a life of its own.
2∗. Falsifiability should be complemented with verifiability.

This concept, known as the new experimentalism, is an influential discipline
in the modern philosophy of science. It provides a statistical methodology to
learn from experiments. For a correct interpretation of experimental results,
it is crucial to distinguish the statistical significance of an experimental result
from its scientific meaning. This work attempts to introduce the concept of
the new experimentalism in evolutionary computation.

1.1 Research Problems

At present, it is intensely discussed which type of experimental research
methodologies should be used to improve the acceptance and quality of evolu-
tionary algorithms (EA). A broad spectrum of presentation techniques makes
new results in evolutionary computation (EC) almost incomparable. Sentences
like “This experiment was repeated ten times to obtain significant results” or
“We have proven that algorithm A is better than algorithm B” can still be
found in current EC publications. Eiben & Jelasity (2002) explicitly list four
problems:



4 1 Research in Evolutionary Computation

Problem 1.1. The lack of standardized test-functions, or benchmark prob-
lems.

Problem 1.2. The usage of different performance measures.

Problem 1.3. The impreciseness of results, and therefore no clearly specified
conclusions.

Problem 1.4. The lack of reproducibility of experiments.

These problems provide guidelines for our analysis and will be reconsidered in
Chap. 9. In fact, there is a gap between theory and experiment in evolution-
ary computation. How to promote good standards and quality of research in
the field of evolutionary computation was discussed during the Genetic and
Evolutionary Computation Conference (GECCO) in 2002. Bentley noted:

Computer science is dominated by the need to publish, publish, pub-
lish, but sometimes this can happen at the expense of research. All
too often poor papers, clumsy presentations, bad reviews or even bad
science can clutter a conference, causing distractions from the more
carefully prepared work (Bentley 2002).

There is a great demand for these topics, as one can see from the interest
in tutorials devoted to these questions during two major conferences in evo-
lutionary computation, the Congress on Evolutionary Computation (CEC)
and GECCO (Bartz-Beielstein et al. 2003d; Wineberg & Christensen 2004;
Bartz-Beielstein & Preuß 2004, 2005a, b).

1.2 Background

Evolutionary computation shares these problems with other scientific disci-
plines such as simulation, artificial intelligence, numerical analysis, or indus-
trial optimization (Dolan & More 2002). Cohen’s survey of 150 publications
from the proceedings of the Eighth National Conference on Artificial Intelli-
gence, which was organized by the American Association for Artificial Intel-
ligence, “gave no evidence that the work they described has been tried out on
more than a single example problem” (Cohen et al. 2000). He clearly demon-
strated that there is no essential synergy between experiment and theory in
these papers.

Cohen (1995) not only reported these negative results, he also provided
valuable examples for how empirical research can be related to theory. Solu-
tions from other disciplines that have been applied successfully for many years
might be transferable to evolutionary computation. We have chosen four cri-
teria to classify existing experimental research methodologies that have a lot
in common with our approach. First, we can mention effective approaches.



1.2 Background 5

They find a solution but are not very efficient and are not focused on un-
derstanding. Greedy, or brute-force approaches belong to this group. Second,
meta-algorithms can be mentioned. They might locate good parameter sets,
though without providing much insight into how sensitive performance is to
parameter changes. Third, approaches that model problems of mostly aca-
demic interest can be listed. These approaches consider artificial test func-
tions or infinite population sizes. Finally, the fourth category comprehends
approaches that might be applicable to our problems although they have been
developed with a different goal. Methods for deterministic computer experi-
ments can be mentioned here. We will give a brief overview of literature on
experimental approaches from these four domains.

1.2.1 Effective Approaches

The methodology presented in this book has its origins in statistical design
of experiments (DOE). But classical DOE techniques as used in agricultural
or industrial optimization must be adapted if applied to optimization mod-
els since stochastic optimization uses pseudorandom numbers (Fisher 1935).
Randomness is replaced by pseudorandomness. For example, blocking and ran-
domization, which are important techniques to reduce the systematic influence
of different experimental conditions, are unnecessary in computer-based op-
timization. The random number seed is the only random element during the
optimization run.

Classical DOE techniques are commonly used in simulation studies—a
whole chapter in a broadly cited textbook on simulation describes experimen-
tal designs (Law & Kelton 2000). Kleijnen (1987, 1997) demonstrated how to
apply DOE in simulation. As simulation is related to optimization (simula-
tion models equipped with an objective function define a related optimization
problem), we suggest the use of DOE for the analysis of optimization problems
and algorithms (Kelton 2000).

This work is not the first attempt to use classical DOE methods in EC.
However, our approach takes the underlying problem instance into account.
Therefore, we do not try to draw any problem-independent conclusions such
as: “The optimal mutation rate in genetic algorithms is 0.1.” In addition, we
propose an approach that is applicable if a small amount of function evalua-
tions are available only. Schaffer et al. (1989) proposed a complete factorial
design experiment that required 8400 run configurations; each configuration
was run to 10,000 fitness function evaluations. Feldt & Nordin (2000) use sta-
tistical techniques for designing and analyzing experiments to evaluate the
individual and combined effects of genetic programming parameters. Three
binary classification problems are investigated in a total of 7 experiments
consisting of 1108 runs of a machine code genetic programming system. My-
ers & Hancock (2001) present an empirical modeling of genetic algorithms.
This approach requires 129,600 program runs. François & Lavergne (2001)
demonstrate the applicability of generalized linear models (GLMs) to design



6 1 Research in Evolutionary Computation

evolutionary algorithms. Again, data sets of size 1000 or even more are nec-
essary, although a simplified evolutionary algorithm with 2 parameters only
is designed.

As we include methods from computational statistics, our approach can
be seen as an extension of these classical approaches. Furthermore, classical
DOE approaches rely strongly on hypothesis testing. The reconsideration of
the framework of statistical hypothesis testing is an important aspect in our
approach.

1.2.2 Meta-Algorithms

The search for useful parameter settings of algorithms itself is an optimization
problem. Optimization algorithms, so called meta-algorithms, can be defined
to accomplish this task. Meta-algorithms for evolutionary algorithms have
been proposed by many authors (Bäck 1996; Kursawe 1999). But this ap-
proach does not solve the original problem completely, because it requires the
determination of a parameter setting of the meta-algorithm.

Additionally, we argue that the experimenter’s skill plays an important
role in this analysis. It cannot be replaced by automatic rules. The difference
between automatic rules and learning tools is an important topic discussed in
the remainder of this book.

1.2.3 Academic Approaches

Experimental algorithmics offer methodologies for the design, implementa-
tion, and performance analysis of computer programs for solving algorithmic
problems (Demetrescu & Italiano 2000; Moret 2002). McGeoch (1986) exam-
ined the application of experimental, statistical, and data analysis tools to
problems in algorithm analysis. Barr & Hickman (1993) and Hooker (1996)
tackled the question how to design computational experiments and how to
test heuristics. Aho et al. (1997) tried “to achieve a greater synergy between
theory and practice.”

Most of these studies were focused on algorithms, and not on programs .
Algorithms can be analyzed on a sheet of paper, whereas the analysis of pro-
grams requires real hardware. The latter analysis includes the influence of
rounding errors or limited memory capacities. We will use both terms simul-
taneously, because whether we refer to the algorithm or the program will be
clear from the context.

Compared to these goals, our aim is to provide methods for very complex
real-world problems, when only a few optimization runs are possible, i.e.,
optimization via simulation. The elevator supervisory group controller study
discussed in Beielstein et al. (2003a) required more than a full week of round-
the-clock computing in a batch job processing system to test 80 configurations.

Our methods are applied to real computer programs and not to abstract
algorithms. A central topic in complexity theory is to answer the question NP



1.2 Background 7

�= P. It is assumed that the class of problems that can be solved nondeter-
ministically in polynomial time (NP) is different from the class of problems
that can be solved in polynomial time (P). Problems in NP are—in contrast
to problems in P—considered difficult and not efficiently solvable. However,
analyses from complexity theory are not sufficient for some problems (Weihe
et al. 1999). Many simple problems belong to NP. Niedermeier (2003) develops
a recent approach to overcome this “dilemma of NP-hardness.” Furthermore,
there is an interesting link between programs (experimental approach) and
algorithms (complexity theory) as discussed in Example 1.1.

Example 1.1 (Hooker 1994). Consider a small subset of very special trav-
eling salesperson problems (TSP) T . This subset is NP-complete, and any
class of problems in NP that contains T is ipso facto NP-complete. Consider
the class P ′ that consists of all problems in P and T . As P ′ contains all easy
problems in the world, it seems odd to say that problems in P ′ are hard. But
P ′ is no less NP-complete than TSP. Why do we state that TSP is hard?
Hooker (1994) suggests that “we regard TSP as a hard class because we in
fact find problems in TSP to be hard in practice.” We acknowledge that TSP
contains many easy problems, but we are able to generate larger and larger
problems that become more and more difficult. Hooker suggests that it is this
empirical fact that justifies our saying that TSP contains characteristically
hard problems. And, in contrast to P ′, TSP is a natural problem class, or as
philosophers of science would say, a natural kind. �

1.2.4 Approaches with Different Goals

Although our methodology has its origin in DOE, classical DOE techniques
used in agricultural and industrial simulation and optimization tackle different
problems and have different goals.

Parameter control deals with parameter values (endogenous strategy pa-
rameters) that are changed during the optimization run (Eiben et al. 1999).
This differs from our approach, which is based on parameter values that are
specified before the run is performed (exogenous strategy parameters). The
assumption that specific problems require specific EA parameter settings is
common to both approaches.

Design and analysis of computer experiments (DACE) as introduced
in Sacks et al. (1989) models the deterministic output of a computer experi-
ment as the realization of a stochastic process. The DACE approach focuses
entirely on the correlation structure of the errors and makes simplistic assump-
tions about the regressors. It describes “how the function behaves,” whereas
regression as used in classical DOE describes “what the function is” (Jones
et al. 1998, p. 14). DACE requires other experimental designs than classical
DOE, e.g., Latin hypercube designs (McKay et al. 1979). We will discuss dif-
ferences and similarities of these designs and present a methodology for how
DACE can be applied to stochastic optimization algorithms.



8 1 Research in Evolutionary Computation

Despite the differences mentioned above, it might be beneficial to adapt
some of these well-established ideas from other fields of research to improve
the acceptance and quality of evolutionary algorithms.

1.3 Common Grounds: Optimization Runs Treated as
Experiments

Gregory et al. (1996) performed an interesting study of dynamic scheduling
that demonstrates how synergetic effects between experiment and theory can
evolve. Johnson et al. (1989, 1991) are seminal studies of simulated annealing.
Rardin & Uzsoy (2001) presented a tutorial that discusses the experimental
evaluation of heuristic search algorithms when the complexities of the prob-
lem do not allow exact solutions. Their tutorial described how to design test
instances, how to measure performance, and how to analyze and present the
experimental results. They demonstrated pitfalls of commonly used measures
such as the algorithm-to-optimal ratio, that measures how close an algorithm
comes to producing an optimal solution.

Birattari et al. (2002) developed a “racing algorithm” for configuring meta-
heuristics that combines blocking designs, nonparametric hypothesis testing,
and Monte Carlo methods. The aim of their work was “to define an auto-
matic hands-off procedure for finding a good configuration through statistical
guided experimental evaluations.” This is unlike the approach presented here,
which provides means for understanding algorithms’ performance (we will use
datascopes similar to microscopes in biology and telescopes in astronomy).
However, Chiarandini et al. (2003) demonstrate that racing can be used in-
teractively and not only as a monolithic block. These studies—although based
on classical DOE techniques only—are closely related to our approach.

Optimization runs will be treated as experiments. In our approach, an
experiment consists of a problem, an environment, an objective function, an
algorithm, a quality criterion, and an initial experimental design. We will use
methods from computational statistics to improve, compare, and understand
algorithms’ performances. The focus in this work lies on natural problem
classes: Its elements are problems that are based on real-world optimization
problems in contrast to artificial problem classes (Eiben & Jelasity 2002).
Hence, the approach presented here might be interesting for optimization prac-
titioners who are confronted with a complex real-world optimization problem
in a situation where only few preliminary investigations are possible to find
good parameter settings.

Furthermore, the methodology presented in this book is applicable a pri-
ori to tune different parameter settings of two algorithms to provide a fair
comparison. Additionally, these methods can be used in other contexts to im-
prove the optimization runs. They are applicable to generate systematically
feasible starting points that are better than randomly generated initial points,
or to guide the optimization process to promising regions of the search space.



1.3 Common Grounds: Optimization Runs Treated as Experiments 9

Meta-model assisted search strategies as proposed in Emmerich et al. (2002)
can be mentioned in this context. Jin (2003) gives a survey of approximation
methods in EC.

Before introducing our understanding of experimental research in EC, we
may ask about the importance of experiments in other scientific disciplines.
For example, the role of experiments in economics changed radically during
recent decades.

1.3.1 Wind Tunnels

The path-breaking work of Vernon L. Smith (2002 Nobel Prize in Economics
together with Daniel Kahneman) in experimental economics provided criteria
to find out whether economic theories hold up in reality. Smith demonstrated
that a few relatively uninformed people can create an efficient market. This
result did not square with theory. Economic theory claimed that one needed
a horde of “perfectly informed economic agents.” He reasoned that economic
theories could be tested in an experimental setting: an economic wind tunnel.
Smith had a difficult time getting the corresponding article published (Smith
1962). Nowadays this article is regarded as the landmark publication in ex-
perimental economics.

Today, many cases of economic engineering are of this sort. Guala (2003)
reports that before “being exported to the real world” the auctions for mo-
bile phones were designed and tested in the economic laboratory at Caltech.
This course of action suggests that experiments in economics serve the same
function that a wind tunnel does in aeronautical engineering. But, the rela-
tionship between the object of experimentation and the experimental tool is of
importance: How much reductionism is necessary to use a tool for an object?
Table 1.1 lists some combinations. Obviously some combinations fit very well,
whereas others make no sense at all.

Table 1.1. Relationship between experimental objects and experimental tools. Some
combinations, for example, reality–computer, require some kind of reductionism.
Others, for example, algorithm–wind tunnel, are useless

Object of experimentation Experimental tool

Reality Computer
Reality Thought experiment
Reality Wind tunnel
Airplane Computer
Airplane Thought experiment
Airplane Wind tunnel
Algorithm Computer
Algorithm Thought experiment
Algorithm Wind tunnel



10 1 Research in Evolutionary Computation

We propose an experimental approach to analyze algorithms that is suit-
able to discover important parameters and to detect superfluous features. But
before we can draw conclusions from experiments, we have to take care that
the experimental results are correct. We have to provide means to control the
error, because we cannot ensure that our results are always sound. Therefore
the concept of the new experimentalism is regarded next.

1.3.2 The New Experimentalism

The new experimentalism is an influential trend in recent philosophy of science
that provides statistical methods to set up experiments, to test algorithms,
and to learn from the resulting errors and successes. The new experimentalists
are seeking a relatively secure basis for science, not in theory or observation
but in experiment. To get the apparatus working for simulation studies is an
active task. Sometimes the recognition of an oddity leads to new knowledge.
Important representatives of the new experimentalism are Hacking (1983),
Galison (1987), Gooding et al. (1989), Mayo (1996), and Franklin (2003).
Deborah Mayo, whose work is in the epistemology of science and the philoso-
phy of statistical inference, proposes a detailed way in which scientific claims
are validated by experiment. A scientific claim can only be said to be sup-
ported by experiment if it passes a severe test. A claim would be unlikely
to pass a severe test if it were false. Mayo developed methods to set up ex-
periments that enable the experimenter, who has a detailed knowledge of the
effects at work, to learn from error.

1.4 Overview of the Remaining Chapters

The first part of this book (Chaps. 1 to 6) develops a solid statistical method-
ology, which we consider to be essential in performing computer experiments.
The second part, which is entitled “Results and Perspectives” (Chaps. 7 and 8)
describes applications of this methodology.

New concepts for an objective interpretation of experimental results are
introduced. Each of the following seven chapters closes with a summary of the
key points. The concept of the new experimentalism for computer experiments
and central elements of an understanding of science are discussed in Chap. 2. It
details the difference between demonstrating and understanding, and between
significant and meaningful. To incorporate these differences, separate models
are defined: models of hypotheses, models of experimental tests, and models
of data. This leads to a reinterpretation of the Neyman–Pearson theory of
testing (NPT). Since hypothesis testing can be interpreted objectively, tests
can be considered as learning tools. Analyzing the frequency relation between
the acceptance (and the rejection) of the null hypothesis and the difference in
means enables the experimenter to learn from errors. This concept of learning



1.4 Overview of the Remaining Chapters 11

tools provides means to extend Popper’s widely accepted claim that theories
should be falsifiable.

Statistical definitions for Monte Carlo methods, classical design and anal-
ysis of experiments, tree-based regression methods, and modern design and
analysis of computer experiments techniques are given in Chap. 3. A bootstrap
approach that enables the application of learning tools if the sampling distri-
bution is unknown is introduced. This chapter is rather technical, because it
summarizes the relevant mathematical formulas.

Computer experiments are conducted to improve and to understand the
algorithm’s performance. Chapter 4 presents optimization problems from evo-
lutionary computation that can be used to measure this performance. Be-
fore an elevator group control problem is introduced as a model of a typical
real-world optimization problem, some commonly used test functions are pre-
sented. Problems related to test suites are discussed as well.

Different approaches to set up experiments are discussed in Chap. 5. Clas-
sical and modern designs for computer experiments are introduced. A sequen-
tial design based on DACE that maximizes the expected improvement is
proposed.

Search algorithms are presented in Chap. 6. Classical search techniques, for
example, the Nelder–Mead “simplex” algorithm, are presented as are stochas-
tic search algorithms. The focus lies on particle swarm optimization algo-
rithms, which build a special class of bioinspired algorithms.

The discussion of the concept of optimization provides the foundation to
define performance measures for algorithms in Chap. 7. A suitable measure
reflects requirements of the optimization scenario or the experimental environ-
ment. The measures are categorized with respect to effectivity and efficiency.
Now, the necessary components according to the discussion in the previous
chapters to perform computer experiments are available: a problem, an en-
vironment, an objective function, an algorithm, a quality criterion, and an
experimental design. After summarizing a classical DOE approach of finding
better suited exogenous parameters (tuning), a sequential approach that com-
prehends methods from computational statistics is presented. To demonstrate
that our approach can be applied to any arbitrary optimization algorithm, sev-
eral variants of optimization algorithms are tuned. Tools from error statistics
are used to decide whether statistically significant results are scientifically
meaningful.

Chapter 8 closes the circle opened in Chap. 2 on the discussion of testing as
an automatic rule and as a learning tool. Provided with the background from
Chap. 2, the aim of Chap. 8 is to propose a method to learn from computer
experiments and to understand how algorithms work. Various schemes for
selection under noise for direct search algorithms are presented. Threshold
selection is related to hypothesis testing. It serves as an example to clarify the
difference between tests as rules of inductive behavior and tests as learning
tools. A summary and an outlook conclude this book in Chap. 9.



12 1 Research in Evolutionary Computation

Introducing the new experimentalism in evolutionary computation pro-
vides tools for the experimenter to understand algorithms and their interac-
tions with optimization problems. Experimentation is understood as a means
for testing hypotheses, the experimenter can learn from error and control the
consequences of his decisions. The methodology presented here is based on the
statistical methods most widely used by today’s practicing scientists. It might
be able “to offer genuine hope for a recovery of some of the solid intuitions of
the past about the objectivity of science”(Ackermann 1989).


