Contents

	Preface	V
0	Introduction	1
PA	RT I: History and Philosophy of Mathematics	5
1	Egyptian Mathematics	7
2	Scales of Notation	11
3	Prime Numbers	15
4	Sumerian-Babylonian Mathematics	21
5	More about Mesopotamian Mathematics	25
6	The Dawn of Greek Mathematics	29
7	Pythagoras and His School	33
8	Perfect Numbers	37
9	Regular Polyhedra	41
10	The Crisis of Incommensurables	47
11	From Heraclitus to Democritus	53

3 The Integers

viii

12 Mathematics in Athens	59	
13 Plato and Aristotle on Mathematics	67	
14 Constructions with Ruler and Compass	71	
15 The Impossibility of Solving the Classical Problems	79	
16 Euclid	83	
17 Non-Euclidean Geometry and Hilbert's Axioms	89	
18 Alexandria from 300 BC to 200 BC	93	
19 Archimedes	97	
20 Alexandria from 200 BC to 500 AD	103	
21 Mathematics in China and India	111	
22 Mathematics in Islamic Countries	117	
23 New Beginnings in Europe	121	
24 Mathematics in the Renaissance	125	
25 The Cubic and Quartic Equations	133	
26 Renaissance Mathematics Continued	139	
27 The Seventeenth Century in France	145	
28 The Seventeenth Century Continued	153	
29 Leibniz	159	
30 The Eighteenth Century	163	
31 The Law of Quadratic Reciprocity	169	
DADT II. Foundations of Marthauset		
PART II: Foundations of Mathematics 173		
1 The Number System	175	
2 Natural Numbers (Peano's Approach)	179	

183

		Contents	ix
1	The Rationals		187
5	The Real Numbers		191
6	Complex Numbers		195
7	The Fundamental Theorem of Algebra		199
8	Quaternions		203
9	Quaternions Applied to Number Theory		207
10	Quaternions Applied to Physics		211
11	Quaternions in Quantum Mechanics		215
12	Cardinal Numbers		219
13	Cardinal Arithmetic		223
14	Continued Fractions		227
15	The Fundamental Theorem of Arithmetic		231
16	6 Linear Diophantine Equations		233
17	7 Quadratic Surds		237
18	8 Pythagorean Triangles and Fermat's Last Theo	rem	241
19	What Is a Calculation?		245
20	Recursive and Recursively Enumerable Sets		251
2	l Hilbert's Tenth Problem		255
2	2 Lambda Calculus		259
2	3 Logic from Aristotle to Russell		265
2	4 Intuitionistic Propositional Calculus		271
2	5 How to Interpret Intuitionistic Logic		277
2	6 Intuitionistic Predicate Calculus		281
2	7 Intuitionistic Type Theory		285

v	Contents
х	

28 Gödel's Theorems	289
29 Proof of Gödel's Incompleteness Theorem	291
30 More about Gödel's Theorems	293
31 Concrete Categories	295
32 Graphs and Categories	297
33 Functors	299
34 Natural Transformations	303
35 A Natural Transformation between Vector Spaces	307
References	311
Index	321