Contents

Pre	Preface		XV
1.	Plan	of the Book	1
	1.1.	Outline of the Contents	1
	1.2.	Terminology and Notation	7
	1.3.	Biographies	8
PAI	RT I	DIRECT PROBABILITY, 1750–1805	
2.		Results and Tools in Probability Theory ernoulli, de Moivre, and Laplace	11
	2.1.	The Discrete Equiprobability Model	11
	2.2.	The Theorems of James and Nicholas Bernoulli, 1713	13
	2.3.	The Normal Distribution as Approximation to the Binomial. De Moivre's Theorem, 1733, and Its Modifications by	17
	2.4	Lagrange, 1776, and Laplace, 1812 Laplace's Analytical Probability Theory	17 25
	2.4.	Laplace's Analytical Probability Theory	23
3.	The I	Distribution of the Arithmetic Mean, 1756–1781	33
	3.1.	The Measurement Error Model	33
	3.2.	The Distribution of the Sum of the Number of Points by n Throws of a Die by Montmort and de Moivre	34
	3.3.	The Mean of Triangularly Distributed Errors. Simpson, 1756–1757	35
	3.4.	The Mean of Multinomially and Continuously Distributed Errors, and the Asymptotic Normality of the Multinomial. Lagrange, 1776	40
	3.5.	The Mean of Continuous Rectangularly Distributed Observations. Laplace, 1776	50
	3.6.	Laplace's Convolution Formula for the Distribution of a Sum, 1781	55

vi Contents

4.	Chan	ce or Design. Tests of Significance	65
	4.1.	Moral Impossibility and Statistical Significance	65
		Daniel Bernoulli's Test for the Random Distribution	
		of the Inclinations of the Planetary Orbits, 1735	68
	4.3.	John Michell's Test for the Random Distribution of the Positions of the Fixed Stars, 1767	70
	4.4.	Laplace's Test of Significance for the Mean Inclination, 1776 and 1812	74
5.	Theo	ry of Errors and Methods of Estimation	79
	5.1.	Theory of Errors and the Method of Maximum	
		Likelihood by Lambert, 1760 and 1765	79
	5.2.	Theory of Errors and the Method of Maximum	
	. .	Likelihood by Daniel Bernoulli, 1778	83
	5.3.	Methods of Estimation by Laplace before 1805	87
6.	Fittin	g of Equations to Data, 1750–1805	91
	6.1.	The Multiparameter Measurement Error Model	91
	6.2.	The Method of Averages by Tobias Mayer, 1750	94
	6.3.	The Method of Least Absolute Deviations by Boscovich, 1757 and 1760	97
	6.4.	Numerical and Graphical Curve Fitting by Lambert, 1765 and 1772	103
	6.5.	Laplace's Generalization of Mayer's Method, 1787	107
	6.6.	Minimizing the Largest Absolute Residual. Laplace, 1786, 1793, and 1799	
	6.7.	Laplace's Modification of Boscovich's Method, 1799	108 112
		Laplace's Determination of the Standard Meter, 1799	116
		Legendre's Method of Least Squares, 1805	118
PAI	RT II	INVERSE PROBABILITY BY BAYES AND LAPLACE, WITH COMMENTS ON LATER DEVELOPMENTS	
_			
7.	Induc	tion and Probability: The Philosophical Background	125
	7.1.	with a madelive Deductive Method	125
	7.2.	Hume's Ideas on Induction and Probability, 1739	126
	7.3.	Hartley on Direct and Inverse Probability, 1749	129
8.	Bayes	s, Price, and the Essay, 1764–1765	133
	8.1.	Lives of Bayes and Price	133

CONTENTS	V

	8.2.	Bayes's Probability Theory	136
		The Posterior Distribution of the Probability of Success	138
	8.4.	Bayes's Scholium and His Conclusion	142
	8.5.	Price's Commentary	145
	8.6.	Evaluations of the Beta Probability Integral by Bayes and Price	147
9.	Equip	probability, Equipossibility, and Inverse Probability	155
	9.1.	Bernoulli's Concepts of Probability, 1713	155
	9.2.	Laplace's Definitions of Equiprobability and Equipossibility, 1774 and 1776	157
	9.3.	Laplace's Principle of Inverse Probability, 1774	159
	9.4.	Laplace's Proofs of Bayes's Theorem, 1781 and 1786	164
10.		ace's Applications of the Principle of Inverse	167
		Introduction	167
		Testing a Simple Hypothesis against a Simple Alternative	167
		Estimation and Prediction from a Binomial Sample	169
	10.4.	A Principle of Estimation and Its Application to Estimate the Location Parameter in the Measurement Error Model	171
	10.5.	Laplace's Two Error Distributions	176
	10.6.	The Posterior Median Equals the Arithmetic Mean for a Uniform Error Distribution, 1781	180
	10.7.	The Posterior Median for Multinomially Distributed Errors and the Rule of Succession, 1781	181
11.	Lapla	nce's General Theory of Inverse Probability	185
	11.1.	The Memoirs from 1781 and 1786	185
	11.2.	The Discrete Version of Laplace's Theory	185
	11.3.	The Continuous Version of Laplace's Theory	188
12.		Equiprobability Model and the Inverse Probability	191
	12.1.		191
	12.1.		192
	12.3.		196
	12.4.		197

viii CONTENTS

	12.5.	Poisson's Analysis of Buffon's Coin-Tossing Data	198
	12.6.	Pearson and Fisher's Analyses of Weldon's	
		Dice-Throwing Data	200
	12.7.	Some Modern Uses of the Equiprobability Model	201
13.	Lapla	ce's Methods of Asymptotic Expansion, 1781 and 1785	203
	13.1.	Motivation and Some General Remarks	203
	13.2.	Laplace's Expansions of the Normal Probability Integral	206
	13.3.	The Tail Probability Expansion	210
	13.4.	The Expansion about the Mode	212
	13.5.	Two Related Expansions from the 1960s	216
	13.6.	Expansions of Multiple Integrals	218
	13.7.	Asymptotic Expansion of the Tail Probability of a Discrete Distribution	220
	13.8.	Laplace Transforms	222
14.	Lapla	ce's Analysis of Binomially Distributed Observations	229
	14.1.	Notation	229
	14.2.	Background for the Problem and the Data	230
	14.3.	A Test for the Hypothesis $\theta \le r$ Against $\theta > r$ Based on the Tail Probability Expansion, 1781	232
	14.4.	A Test for the Hypothesis $\theta \le r$ Against $\theta > r$ Based on the Normal Probability Expansion, 1786	234
	14.5.	Tests for the Hypothesis $\theta_2 \le \theta_1$ Against $\theta_2 > \theta_1$, 1781, 1786, and 1812	235
	14.6.	Looking for Assignable Causes	240
	14.7.		
	14.8.	Compound Events, 1812 Commentaries	242 245
15	Lonlo	oo's Theorem of Caralinia I.B. 11 at	
15.		ce's Theory of Statistical Prediction	249
		The Prediction Formula	249
	15.2.	Predicting the Outcome of a Second Binomial Sample from the Outcome of the First	249
	15.3.	Laplace's Rule of Succession	256
	15.4.		262
	15.5.	Laplace's Asymptotic Theory of Statistical Prediction, 1786	264
	15.6.	Notes on the History of the Indifference Principle and the Rule of Succession from Laplace to Jeffreys (1948)	269
			140

CONTENTS	ix
----------	----

16.		ce's Sample Survey of the Population of France	
	and tl	he Distribution of the Ratio Estimator	283
	16.1.	The Ratio Estimator	283
	16.2.	Distribution of the Ratio Estimator, 1786	284
	16.3.	Sample Survey of the French Population in 1802	286
	16.4.	From Laplace to Bowley (1926), Pearson (1928),	
		and Neyman (1934)	289
PA]	RT III	THE NORMAL DISTRIBUTION, THE METHOD OF LEAST SQUARES, AND THE CENTRAL LIMIT THEOREM. GAUSS AND LAPLACE, 1809–1828	
17.	Early	History of the Central Limit Theorem, 1810–1853	303
	17.1.	The Characteristic Function and the Inversion Formula for a Discrete Distribution by Laplace, 1785	303
	17.2.	Laplace's Central Limit Theorem, 1810 and 1812	307
	17.3.	Poisson's Proofs, 1824, 1829, and 1837	317
	17.4.	Bessel's Proof, 1838	327
	17.5.	Cauchy's Proofs, 1853	329
	17.6.	Ellis's Proof, 1844	333
	17.7.	Notes on Later Developments	335
	17.8.	Laplace's Diffusion Model, 1811	337
	17.9.	Gram-Charlier and Edgeworth Expansions	344
18.	Deriv	ations of the Normal Distribution as a Law of Error	351
	18.1.	Gauss's Derivation of the Normal Distribution and the Method of Least Squares, 1809	351
		Laplace's Large-Sample Justification of the Method of Least Squares and His Criticism of Gauss, 1810	357
		Bessel's Comparison of Empirical Error Distributions with the Normal Distribution, 1818	360
	18.4.	The Hypothesis of Elementary Errors by Hagen, 1837, and Bessel, 1838	365
	18.5.	Derivations by Adrain, 1808, Herschel, 1850, and Maxwell, 1860	368
	18.6.	Generalizations of Gauss's Proof: The Exponential Family of Distributions	373
	18.7.	Notes and References	380

CONTENTS

10	Came	of Tanana Namual Madal and the Mathe book	
19.		s's Linear Normal Model and the Method of Least res, 1809 and 1811	381
	19.1.	The Linear Normal Model	381
	19.2.	Gauss's Method of Solving the Normal Equations	383
	19.3.	The Posterior Distribution of the Parameters	386
	19.4.	Gauss's Remarks on Other Methods of Estimation	393
	19.5.	The Priority Dispute between Legendre and Gauss	394
20.		ace's Large-Sample Theory of Linear nation, 1811–1827	397
	20.1.	Main Ideas in Laplace's Theory of Linear Estimation, 1811–1812	397
	20.2.	Notation	398
	20.3.	The Best Linear Asymptotically Normal Estimate for One Parameter, 1811	399
		Asymptotic Normality of Sums of Powers of the Absolute Errors, 1812	401
		The Multivariate Normal as the Limiting Distribution of Linear Forms of Errors, 1811	402
		The Best Linear Asymptotically Normal Estimates for Two Parameters, 1811	405
	20.7.	Laplace's Orthogonalization of the Equations of Condition and the Asymptotic Distribution of the Best Linear Estimates in the Multiparameter Model, 1816	410
	20.8.	The Posterior Distribution of the Mean and the Squared Precision for Normally Distributed Observations, 1818 and 1820	418
	20.9.	Application in Geodesy and the Propagation of Error, 1818 and 1820	424
	20.10	Linear Estimation with Several Independent Sources of Error, 1820	430
	20.11.	Tides of the Sea and the Atmosphere, 1797–1827	431
	20.12.	Asymptotic Efficiency of Some Methods of Estimation, 1818	444
	20.13.	Asymptotic Equivalence of Statistical Inference by Direct and Inverse Probability	452
21.	Gauss Estim	s's Theory of Linear Unbiased Minimum Variance action, 1823–1828	455
	21.1.	Asymptotic Relative Efficiency of Some Estimates of the Standard Deviation in the Normal Distribution, 1816	455

CONTENTS			

хi

21.2.	Expectation, Variance, and Covariance of Functions of Random Variables, 1823	459
21.3.	Gauss's Lower Bound for the Concentration of the	
	Probability Mass in a Unimodal Distribution, 1823	462
21.4.	Gauss's Theory of Linear Minimum Variance Estimation, 1821 and 1823	465
21.5.	The Theorem on the Linear Unbiased Minimum	
	Variance Estimate, 1823	467
21.6.	The Best Estimate of a Linear Function of the Parameters, 1823	476
21.7.	The Unbiased Estimate of σ^2 and Its Variance, 1823	477
	Recursive Updating of the Estimates by an Additional Observation, 1823	480
21.9	Estimation under Linear Constraints, 1828	484
	A Review	488
PART IV	SELECTED TOPICS IN ESTIMATION THEORY, 1830–1930	
22. On E	rror and Estimation Theory, 1830–1890	493
22.1.	Bibliographies on the Method of Least Squares	493
22.2.	State of Estimation Theory around 1830	494
22.3.	Discussions on the Method of Least Squares	
	and Some Alternatives	496
	ymé's Proof of the Multivariate Central Limit	
	rem and His Defense of Laplace's Theory of Linear nation, 1852 and 1853	501
	The Multivariate Central Limit Theorem, 1852	501
	Bravais's Confidence Ellipsoids, 1846	504
23.3.	Bienaymé's Confidence Ellipsoids and the	500
	χ^2 Distribution, 1852	506
	Bienaymé's Criticism of Gauss, 1853	509
23.5.	The Bienaymé Inequality, 1853	510
24. Cauc Be In	hy's Method for Determining the Number of Terms To acluded in the Linear Model and for Estimating the	
	meters, 1835–1853	511
24 1	The Problem	511
	Solving the Problem by Means of the Instrumental	
۵٦.۷.	Variable ± 1 , 1835	512

Xİİ CONTENTS

	24.3. 24.4.	Cauchy's Two-Factor Multiplicative Model, 1835 The Cauchy-Bienaymé Dispute on the Validity of the	516
	24.4.	Method of Least Squares, 1853	520
25.	Ortho	ogonalization and Polynomial Regression	523
	25.1.	Orthogonal Polynomials Derived by Laplacean Orthogonalization	523
	25.2.	Chebyshev's Orthogonal Polynomials, Least Squares, and Continued Fractions, 1855 and 1859	525
	25.3.	Chebyshev's Orthogonal Polynomials for Equidistant Arguments, 1864 and 1875	535
	25.4.	Gram's Derivation of Orthogonal Functions by the Method of Least Squares, 1879, 1883, and 1915	540
	25.5.	Thiele's Free Functions and His Orthogonalization of the Linear Model, 1889, 1897, and 1903	550
	25.6.	Schmidt's Orthogonalization Process, 1907 and 1908	556
	25.7.		
		Equidistant Arguments	557
26.		tical Laws in the Social and Biological Sciences. Poisson, elet, and Galton, 1830–1890	567
	26.1.	Probability Theory in the Social Sciences by Condorcet and Laplace	567
	26.2.	Poisson, Bienaymé, and Cournot on the Law of Large Numbers and Its Applications, 1830–1843	571
	26.3.	Quetelet on the Average Man, 1835, and on the Variation around the Average, 1846	586
	26.4.	Galton on Heredity, Regression, and Correlation, 1869-1890	599
		Notes on the Early History of Regression and Correlation, 1889–1907	616
27.	Samp	ling Distributions under Normality	633
	27.1.	The Helmert Distribution, 1876, and Its Generalization to the Linear Model by Fisher, 1922	633
	27.2.	The Distribution of the Mean Deviation by Helmert, 1876, and by Fisher, 1920	641
	27.3.	Thiele's Method of Estimation and the Canonical Form of the Linear Normal Model, 1889 and 1903	645
	27.4.	Karl Pearson's Chi-Squared Test of Goodnes of Fit, 1900, and Fisher's Amendment, 1924	648

CONTENTS	xiii

	27.5.	"Student's" t Distribution by Gosset, 1908	664
	27.6.	Studentization, the F Distribution, and the Analysis of Variance by Fisher, 1922–1925	669
	27.7.	The Distribution of the Correlation Coefficient, 1915, the Partial Correlation Coefficient, 1924, the Multiple Correlation Coefficient, 1928, and the Noncentral χ^2 and F Distributions, 1928, by Fisher	675
		•	015
28.	Fisher Precu	r's Theory of Estimation, 1912–1935, and His Immediate rsors	693
	28.1.	Notation	693
	28.2.	On the Probable Errors of Frequency Constants by Pearson and Filon, 1898	695
	28.3.	On the Probable Errors of Frequency Constants by Edgeworth, 1908 and 1909	697
	28.4.	On an Absolute Criterion for Fitting Frequency Curves by Fisher, 1912	707
	28.5.	The Parametric Statistical Model, Sufficiency, and the Method of Maximum Likelihood. Fisher, 1922	713
	28.6.	Efficiency and Loss of Information. Fisher, 1925	720
	28.7.	Sufficiency, the Factorization Criterion, and the Exponential Family. Fisher, 1934	727
	28.8.	Loss of Information by Using the Maximum Likelihood Estimate and Recovery of Information by Means of Ancillary Statistics. Fisher, 1925	729
	28.9.	Examples of Ancillarity and Conditional Inference. Fisher, 1934 and 1935	732
	28.10	The Discussion of Fisher's 1935 Paper	733
	28.11	A Note on Fisher and His Books on Statistics	734
Ref	References		
Ind	Index		