Contents

Preface	1
Greenhouse gas inventories, measurement and modelling	1
Measurements of greenhouse gas fluxes from agriculture A. Neftel, C. Fischer and Ch. Flechard	3
Emission of GHG from livestock production in Japan J. Takahashi	13
Greenhouse gas inventories from animal agriculture for the United States K.A. Johnson and D.E. Johnson	21
Greenhouse gas emissions from livestock waste: China evaluation H. Jicong, X. Yanhua, W. Fengde and D. Renjie	29
Decreasing emissions of methane from rice agriculture M.A.K. Khalil and M.J. Shearer	33
In situ quantification of methane oxidation in soils using Gas Push-Pull Tests G. Gonzalez-Gil, K. Urmann, K. Gomez, M.H. Schroth and J. Zeyer	42
Prediction of methane output in beef cattle from indirect respiration calorimetry data A. Mc Court, T. Yan, C.S. Mayne and M.G. Porter	46
Alternative tracer gases for the ERUCT technique to estimate methane emission from grazing animals A. Machmüller and R.S. Hegarty	50
First results of a meta-analysis of the methane emission data of New Zealand ruminants	
A. Machmüller and H. Clark	54
Comparison of sulfur hexafluoride tracer technique, rumen simulation technique and in vitro gas production techniques for methane production from ruminant feeds R. Bhatta, K. Tajima, N. Takusari, K. Higuchi, O. Enishi and M. Kurihara	58

The influence of head-space and inoculum dilution on in vitro ruminal methane measurements	
C. Longo, I.C.S. Bueno, E.F. Nozella, P.B. Goddoy, S.L.S. Cabral Filho and A.L. Abdalla	62
Micrometeorological techniques to measure ecosystem-scale greenhouse gas fluxes for model validation and improvement W. Eugster and M.J. Zeeman	66
Modelling nitrous oxide abatement strategies in intensive pasture systems R. Eckard, I. Johnson and D. Chapman	76
Modeling GHG emissions and carbon sequestration in Swiss agriculture: An integrated economic approach W. Hediger	86
Modeled effects of policy instruments to mitigate greenhouse gas emissions from livestock farming systems in southwest Germany M. Schäfer and H. Neufeldt	96
Strategies to mitigate methane emission from livestock	101
Effects of pasture improvement on productivity, gross margin and methane emissions of a grazing sheep enterprise D. Alcock and R.S. Hegarty	103
Greenhouse gas mitigation opportunities with immediate application to pastoral grazing for ruminants G.C. Waghorn and D.A. Clark	107
The persistence over time of divergent methane production in lot fed cattle J.P. Goopy, R.S. Hegarty and R.C. Dobos	111
Inconsistencies in rumen methane production—effects of forage composition and animal genotype G.C. Waghorn, S.L. Woodward, M. Tavendale and D.A. Clark	115
Methane emission as determined in contrasting dairy cattle breeds over the reproduction cycle A. Münger and M. Kreuzer	119
Effects of dietary and animal factors on methane production in dairy cows offered grass silage-based diets T. Yan, C.S. Mayne and M.G. Porter	123

Archaeal community structure diversity in the rumen of faunated and defaunated	
sheep D.P. Morgavi, J.P. Jouany, C. Martin and M.J. Ranilla	127
Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors M.J. Wolin and T.L. Miller	131
Dietary additives to control methanogenesis in the rumen C.J. Newbold and L.M. Rode	138
Encapsulated fumaric acid as a means of decreasing ruminal methane emissions R.J. Wallace, T.A. Wood, A. Rowe, J. Price, D.R. Yanez, S.P. Williams and C.J. Newbold	148
Effects of various feed additives on the methane emissions from beef cattle K.A. Beauchemin and S.M. McGinn	152
Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds D.N. Kamra, N. Agarwal and L.C. Chaudhary	156
Strategic use of tannins as means to limit methane emission from ruminant livestock H.D. Hess, T.T. Tiemann, F. Noto, J.E. Carulla and M. Kreuzer	164
Effect of foliage from multi-purpose trees and a leguminous crop residue on in vitro methanogenesis and ruminal N use A.B. Zeleke, C. Clément, H.D. Hess, M. Kreuzer and C.R. Soliva	168
Effects of the addition of some medicinal plants on methane production in a rumen simulating fermenter (RUSITEC) R. García-González, S. López, M. Fernández and J.S. González	172
Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test A.K. Patra, D.N. Kamra and N. Agarwal	176
Effect of plant oils on methane emission and biohydrogenation in vitro A. Cieślak, C.R. Soliva, A. Potkański, M. Szumacher-Strabel, M.R.L. Scheeder and A. Machmüller	180
Micro-algae as potent rumen methane inhibitors and modifiers of rumen lipolysis and biohydrogenation of linoleic and linolenic acid C. Boeckaert, J. Mestdagh, B. Vlaeminck, D. Clayton and V. Fievez	184
~	

Effects of L-cysteine supplementation on growth performance and ruminal fermentation in growing steers in comparison to monensin I. Shinzato, K. Abe, S. Kogawa, Y. Toride and J. Takahashi	189
Effect of wild type Escherichia coli W3110 or Escherichia coli nir-Ptac on methane emission and nitrate toxicity in nitrate-treated sheep	107
C. Sar, B. Mwenya, B. Pen, K. Takaura, R. Morikawa, A. Tsujimoto, N. Isogai, Y. Asakura, I. Shinzato, Y. Toride and J. Takahashi	193
Greenhouse gas formation from manure	197
Methane mitigation in ruminants by dietary means: The role of their methane emission from manure M. Kreuzer and I.K. Hindrichsen	199
Effect of feed additives on ruminal methanogenesis and anaerobic fermentation of manure in cows and steers B. Mwenya, C. Sar, B. Pen, R. Morikawa, K. Takaura, S. Kogawa, K. Kimura, K. Umetsu and J. Takahashi	209
Mitigation of methane emissions during manure storage W. Berg and I. Pazsiczki	213
Optimising methane yield from anaerobic digestion of manure: Effects of dairy systems and of glycerine supplementation Th. Amon, B. Amon, V. Kryvoruchko, V. Bodiroza, E. Pötsch and W. Zollitsch	217
Enhanced anaerobic digestion of biomass waste for optimized production of renewable energy and solids for compost	221
M.L. Albertson, A. Pruden and R.T. Oliver	221
Evaluation of a biogas plant from life cycle assessment (LCA) S. Ishikawa, S. Hoshiba, T. Hinata, T. Hishinuma and S. Morita	230
Biogas as a reproducible energy source: Its steam reforming for electricity generation and for farm machine fuel M. Komiyama, T. Misonou, S. Takeuchi, K. Umetsu and J. Takahashi	234
Thermophilic biogas plant for dairy manure treatment as combined power and heat system in cold regions	
K. Aoki, K. Umetsu, K. Nishizaki, J. Takahashi, T. Kishimoto, M. Tani, O. Hamamoto and T. Misaki	238

Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland T. Matsunaka, T. Sawamoto, H. Ishimura, K. Takakura and A. Takekawa	242
Nitrogen losses from intensive livestock farming systems in Southeast Asia: A review of current trends and mitigation options <i>P. Gerber and H. Menzi</i>	253
Nitrogen budgets and losses in livestock systems O. Oenema	262
Reduction of nitrogen surplus by material circulation between dairy farms and arable crop farms in the mixed production area, Japan K. Nekomoto, S. Hoshiba, Y. Tamura, H. Kato (Kawakami), T. Uchida, K. Matsumoto and S. Morita	272
Ammonia emissions from agriculture—changing perception and research priorities in time: Case study in Switzerland H. Menzi, B. Reidy, W. Richner and F.X. Stadelmann	276
Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs B. Amon, A. Pöllinger, V. Kryvoruchko, I. Mösenbacher, A. Hausleitner, M. Fröhlich and Th. Amon	287
Gaseous emissions from a deep litter farming system for dairy cattle J. Mosquera, J.M.G. Hol and G.J. Monteny	291
Greenhouse gas and ammonia emission abatement by slurry treatment B. Amon, V. Kryvoruchko, G. Moitzi and T. Amon	295
Gaseous emissions (NH ₃ , N ₂ O, CH ₄ , CO ₂) during pig slurry biological aerobic treatment and treatment by-product storages L. Loyon, F. Guiziou, F. Béline and P. Peu	299
Measurement and regulation of environmentally hazardous gas emissions from beef cattle manure composting M. Shiraishi, N. Wakimoto, E. Takimoto, H. Kobayashi and T. Osada	303
Anaerobic co-digestion of dairy manure and sugar beets K. Umetsu, S. Yamazaki, T. Kishimoto, J. Takahashi, Y. Shibata, C. Zhang, T. Misaki, O. Hamamoto, I. Ihara and M. Komiyama	307
Effect of moisture control in pile-type composting of dairy manure by adding wheat straw on greenhouse gas emission T. Tamura and T. Osada	311

Influence of different methods of covering slurry stores on greenhouse gas and ammonia emissions B. Amon, V. Kryvoruchko and T. Amon	315
Effect of novel covering digested dairy slurry store on ammonia and methane emissions during subsequent storage N. Sakamoto, M. Tani and K. Umetsu	319
A low cost solution for ammonia emission abatement from slurry storage <i>P. Balsari, E. Dinuccio and F. Gioelli</i>	323
Ammonia nitrogen emission from land spread farmyard manure P. Balsari, F. Gioelli and E. Dinuccio	327
Utilization of anaerobically digested dairy slurry combined with other wastes following application to agricultural land M. Tani, N. Sakamoto, T. Kishimoto and K. Umetsu	331
Effect of Holstein-Friesian strain and feeding system on greenhouse gas emissions from pastoral dairy production systems D.K. Lovett, L. Shalloo, B. Horan, P. Dillon and F.P. O'Mara	335
Effects of tannins on ruminal degradation and excretory pattern of N and implications for the potential N emission from the manure H.D. Hess, T.T. Tiemann, Ch.D. Stürm, J.E. Carulla, C.E. Lascano and M. Kreuzer	339
Gaseous nitrogen losses from a grassland area used for overwintering cattle M. Šimek, R.J. Stevens, R.J. Laughlin, J. Hynšt, P. Brůček, J. Čuhel and L. Pietola	343
Mitigating N ₂ O emissions from urine patches in pastures J.W. van Groenigen, D.M. Kool, G.L. Velthof, O. Oenema and P.J. Kuikman	347
Nitrous oxide emissions from a fertilized grazed grassland in Ireland B.P. Hyde, M.J. Hawkins, M. Ryan and O.T. Carton	351
Nitrous oxide emissions during storage of broiler litter and following application to arable land R.E. Thorman, D.R. Chadwick, L.O. Boyles, R. Matthews, E. Sagoo and R. Harrison	355
Impact of NO ₃ leaching abatement measures on N ₂ O and CH ₄ emissions from a UK dairy system	2
A. del Prado, L. Cardenas and D. Scholefield	359

	xiii
"Forgotten" terrestrial sources of N-gases P. Boeckx and O. Van Cleemput	363
Author index	371
Keyword index	375