Contents

	Preface	i
	Contributors	xii
	Court inditol 2	xvi
1	. Manufacturing Advisory Service System for Concurrent and Collaborative	
	Design of MEMS Devices	1
	Xuan F Zha	,
	1. Introduction	,
	2. Current Status of Research	4
	3. Concurrent Collaborative Design Methodologies and	_
	Framework for MEMS	ϵ
	4. Strategy for MEMS Manufacturing Process and	
	Material Selection	11
	5. Knowledge Support for MEMS Manufacturing Process and	11
	Material Selection	14
	6. MEMS Manufacturing Advisory Service System	18
	7. Use of WebMEMS-MASS	26
	8. Results and Discussions	29
	9. Summary and Future Work	31
	10. Disclaimer and Acknowledgement	31
	References	32
1	Web E11 177	
۷.	Web-Enabled Knowledge-Intensive Support Framework for Collaborative	
	Design of MEMS	35
	Xuan F Zha	
	1. Introduction	36
	2. Current Status of Research	37
	3. Knowledge Intensive Collaborative Framework	
	for Network-Centric Design	41
	4. KS-WebDMME Framework for Collaborative Design of MEMS	43
	5. Development of Web-Based Collaborative MEMS Design System	46
	6. Case Study: Collaborative Design for A Microgripper	52
	7. Summary and Future Work 8. Disclaimer	60
	References	63
	Keleienes	63

_	TV 1 E 11 1D 4-1 Contam Development for Design and Manufacturing	
3.	Web-Enabled Database System Development for Design and Manufacturing	73
	of Micro-Electro-Mechanical Systems (MEMS)	, 5
	Xuan F Zha, W.Y. Toh, and H. Du	74
	1. Introduction	75
	2. MEMS Fabrication/Manufacturing Technologies	84
	3. Database Design Fundamentals	91
	4. Design of MEMS Manufacturing Databases	96
	5. Development of the Web Enabled Database System Software	70
	6. Integration of the Web Database System with MEMS	103
	CAD/CAM/CAE System	106
	7. Discussions and Summary	107
	8. Disclaimer	107
	References	107
1	. Techniques in Proper Orthogonal Decomposition and Component	
•	Mode Synthesis for the Dynamic Simulation of Complex MEMS	
	Devices and Their Applications	111
	W.Z. Lin, S.P. Lim, and Y.C. Liang	111
	1. Introduction	113
	2. Proper Orthogonal Decomposition	116
	3. Galerkin Procedure	117
	4. A Single Structural MEMS Device and Model Description	131
	5. A Complex MEMS Device and Model Description	148
	6. Concluding Remarks	149
	7. Acknowledgement	149
	References	147
5	. Techniques in Global Optimal Design for MEMS and	
_	Their Applications	151
	Andojo Ongkodjojo and Francis E.H. Tay	
	1. Introduction	152
	2. Single-Objective Optimization	152
	3. Multi-Objective Optimization	152
	4. Comparison Among the SA and Other Algorithms	156
	5. Applications	157
	6. Conclusion	170
	7. Acknowledgement	171
	References	171
•	6. Theory and Design of Micromechanical Vibratory Gyroscopes	173
	Vladislav Apostolyuk	173
	1. Introduction	17.
	2. Operation Principle and Classification	19
	3. Dynamic Error and Bandwidth	19:
	4. Design Methodology	19.

CONTENTS	vii
----------	-----

	5. Resume References	195 195
		173
7.	A Hierarchical Design Platform for Microelectrofluidic Systems (MEFS) Tianhao Zhang, Krishnendu Chakrabarty and Richard B. Fair	197
	1. Introduction	197
	2. Hierarchical Design Platform	203
	3. PCR Performance Evaluation Using the Universal Hierarchical	
	Design Platform	212
	4. Conclusion	231
	References	232
8.	Techniques in Electrostatics Analysis of MEMS and Their Applications	235
	E.T. Ong, K.M. Lim, and H.P. Lee	233
	1. Introduction	235
	2. Improving Accuracy of Electrostatics Analysis	237
	3. Improving Efficiency of Solution Method	272
	References	288
9.	Techniques for Efficient Analytical and Simulation Methods in the	
•	Prototyping of MEMS Systems	202
	Y. Su, C. S. Chong, Q. X. Wang and Hua Li	293
	1. Introduction	293
	2. Automatic Mesh Generation	293 294
	3. Automatic Model Decomposition and Reduction	300
	4. Coupled BEM and FEM	304
	5. Meshless Methodology	304
	6. Applications of Meshless Techniques	324
	7. Conclusions	330
	References	332
		332
]	Index	335