Table of Contents

ы	List of FiguresXV					
Li	st of	Tab	les.		. XXI	
Al	bbreviationsXXVII					
1	In	troc	lucti	tion	1	
	1.1	Mo	otiva	ation and Research Questions	4	
	1.2	Str	uctu	ure of the Dissertation	6	
2	In	ter-	Org	ganizational Cooperation and Supply Chain Management	9	
	2.1	Int	er-C	Organizational Cooperation	10	
	2.	1.1	D	Definition of Cooperation	11	
	2.	1.2	D	Definition of Inter-Organizational Cooperation	14	
	2.	1.3	F	Forms of Inter-Organizational Cooperation	16	
		2.1	.3.1	Redistributive and Reciprocal Inter-Organizational Cooperation	17	
		2.1	.3.2	X and Y Inter-Organizational Cooperation	19	
		2.1	.3.3	Rotering Matrix for Identifying the Type of Inter-Organizational Cooperation	21	
	2.2	Sup	pply	Chain Management	22	
	2.2	2.1	Sı	supply Chain Management as a Field of Research and of Practical Endeavors	22	
	2.2	2.2	D	Defining Supply Chain Management	24	
	2.2	2.3	T	The Objectives of Supply Chain Management	28	
	2.2	2.4	Is	ssues Related to Cooperation in the Context of Supply Chain Management	32	
		2.2.	.4.1	Co-operation - A Concept Describing Simultaneous Cooperation and Competition	33	
		2.2.	4.2	The Bullwhip Effect - A Frequent Problem in Supply Chains with Lower Degree of Cooperation	35	
			2.2.4	4.2.1 Demand Forecast Updating	36	
			2.2.4	4.2.2 Order Batching		
			2.2.4	4.2.3 Price Fluctuation		
				4.2.4 Rationing and Shortage Gaming		
				cs Planning as Object of Inter-Organizational Cooperation		
	2.3	3.1		Business Logistics – a Supply Chain Management Process		
	2.3	3.2	L	ogistics Planning as a Hierarchical Planning Problem	42	

	2.3.3	Inter-Organizational Logistics Planning in Supply Chains as a Hierarchical Planning Problem	46
	2.3.4	Inter-Organizational Planning - The Approach of Wyner and Malone	47
3	Cooper	ation in Supply Chains and SCM Software Use in the European Automotive Industry	51
	3.1 Coo	perative Transportation in Supply Chains	51
	3.1.1	An Exemplary Decision Category in Logistics: Transportation	51
	3.1.2	Selected Cooperative Scenarios for Transportation	55
	3.1.2	.1 Cooperation Scenario I: Engaging in a Logistics Alliance	56
	3.1.2	.2 Cooperation scenario II: Supply Chain-Wide Container Management	60
	3.1.2	.3 Cooperation Scenario III: Selling Excess Transportation Capacity to Other Companies	60
	3.1.2	.4 Cooperation Scenario IV: Joint Ownership of Transportation Capacity	62
	3.1.2	.5 Cooperation Scenario V: Multi-Stop Shipping and Sequenced Loading	62
	3.1.2	.6 Cooperation Scenario VI: Merge-in-Transit and Sequenced Loading	64
	3.1.2	.7 Cooperation Scenario VII: Cross Docking and Sequenced Loading	67
	3.1.2	.8 Cooperation Scenario VIII: Sequenced Delivery	69
	3.2 SCN	1 Software as an Instrument for Cooperative Planning in Supply Chains - An Explorative	
	Surv	rey on the European Automotive Industry	71
	3.2.1	Information Sharing as Premise for Cooperation in Supply Chains	71
	3.2.2	Goals of the Survey	78
	3.2.3	Research Design	79
	3.2.4	Cooperation in the European Automotive Industry	80
	3.2.4	.1 Fields of Cooperation	81
	3.2.4	.2 Collaborative Planning	81
	3.2.5	Supply Chain Management Software in the European Automotive Industry	84
	3.2.5		
	3.2.5		
	3.2.5	.3 Evaluation of Benefits from Using Supply Chain Management Software	88
	3.2.5	.4 Supply Chain Management Software and Network Effects in the European Automotive Industry	90
	3.2.6	Summary of Results	94
4	The Su	pply Chain of the Audi A8 V8 4.01 Diesel Engine – A Case Study of Audi AG	97
		osés of Companies in the Supply Chain of the V8 4.0l Diesel Engine	
	4.1.1	Audi AG	
	4.1.1		
	4.1.1		
	4.1.2	Audi Hungaria Motor Kft	
	4.1.3	TCG Unitech Systemtechnik	
	4.1.4	Gustav Wahler GmbH u. Co. KG	
	4.2 Des	cription and Analysis of the Supply Chain of the Audi A8 V8 4.01 Diesel Engine	105
	4.2.1	Description of the Supply Chain of the Audi A8 V8 4.0l Diesel Engine	
	4.2.2	Analysis of Inventory Levels in the Supply Chain of the Audi A8 V8 4.0l Diesel Engine	114
	4.2.3	Analysis of Orders Placed by the Companies in the Supply Chain of the Audi A8 V8 4.01	114
		Diesel Engine	
	4.3 Eva	luation of the Audi AG Supply Chain	121
		Tps; Cimiting	129

	4.3	3 1	The	Bullwhip Effect in the Supply Chain of the Audi A8 V8 4.0l Diesel Engine	129
		3.2		luation of the Cooperation Scenarios for Transportation in the Supply Chain of the Audi	
	,,,			V8 4.01 Diesel Engine	139
		4.3.2		Cooperation Scenario I: Engaging in a Logistics Alliance	
		4.3.2		Cooperation Scenario II: Supply Chain-wide Container Management	
		4.3.2		Cooperation Scenario III: Selling Excess Transportation Capacity to Other Companies	
		4.3.2		Cooperation Scenario IV: Joint Ownership of Transportation Capacity	
		4.3.2		Cooperation Scenario V: Multi-Stop Shipping and Sequenced Loading	
		4.3.2		Cooperation Scenario VI: Merge-in-Transit and Sequenced Loading	
		4.3.2	7	Cooperation Scenario VII: Cross Docking and Sequenced Loading	
		4.3.2	8	Cooperation scenario VIII: Sequenced delivery	
	4.3	3.3	Eva	luation of the Implementation of Supply Chain Monitoring in the Audi AG Supply Chain:	
			Rea	l-time Exchange of Information on Capacity, Inventory, and Demand	143
	4.4	Sum		of Results	
,	SC		•	r – A Prototype for Quantifying Benefits of Cooperative Planning in Supply Chains	
	5.1	•		cal Implementation	
	5.1			SCOptimizer Architecture	
	-	1.2		totypical Implementation of the Evaluation of Cooperative Distribution Planning with the	101
	3	1.2		Optimizer	140
		- 4 2		Planning Background	
		5.1.2 5.1.2		Description from the Planner's Point of View	
	F /	5.1.2 1.3	-	totypical Implementation of the Evaluation of the Bullwhip Effect	
	5.			Planning Background	
		5.1.3			
	5.2	5.1.3		Description from the Planner's Point of Viewtional Study on Cooperative Distribution - An Exemplary Evaluation of Cooperative	196
	5.2		•	,	222
				Using the SCOptimizer	
	5.2			proach of the Computational Study	
	5.2	2.2		cted Results of the Computational Study	
		5.2.2		Total Costs	
		5.2.2		Vehicle Costs	
		5.2.2		Distance Costs	
		5.2.2		Capacities	
		5.2.2		Relative Results	
		2.3		nmary of Results	
•				d Conclusions	
	6.1			of the Findings and Implications	
	6.2	2 Outlook and Further Research257			

References.....

List of Figures

Figure 1:	Delimitation of the Coordination Forms Market-Cooperation-Hierarchy	12
Figure 2:	Redistributive Cooperation	18
Figure 3:	Reciprocal Cooperation	19
Figure 4:	Y Cooperation	20
Figure 5:	X Cooperation	21
Figure 6:	Rotering Matrix for Classifying Inter-Organizational Cooperation	21
Figure 7:	Levels of Supply Chain Complexity	27
Figure 8:	Increasing Demand Order Variability Upstream the Supply Chain	35
Figure 9:	Logistics Planning Activities	41
Figure 10:	Examples of Hierarchical Situations	43
Figure 11:	Structure of a Hierarchical Planning System	43
Figure 12:	Hierarchies in Distributed Planning	45
Figure 13:	Hierarchical Structure of Logistics Planning in Supply Chains	47
Figure 14:	Forms of Inter-Organizational Planning	48
Figure 15:	Multi-Stop Shipping and Sequenced Loading	64
Figure 16:	Delivery to the Manufacturer with and without Merge-in-Transit	65
Figure 17:	Comparison of Merge-in-Transit and Cross Docking	68
Figure 18:	Bilateral Information Exchange in Supply Chains	72
Figure 19:	The Supply Chain-Wide Exchange of Information	72

Figure 20:	Screenshot from ICON-SCC/5
Figure 21:	Complementary Use of ERP and SCM Solutions79
Figure 22:	Is Your Company Taking Part in Multiple Supply Chains?81
Figure 23:	Degree of Collaboration in Planning Processes
Figure 24:	Does Your Company Have a SCM Software Solution?84
Figure 25:	Why Does Your Company not Use SCM Software?85
Figure 26:	Persecuted Goals – Reductions
Figure 27:	Persecuted Goals – Improvements87
Figure 28:	Evaluation of Supply Chain Management Software – I
Figure 29:	Evaluation of Supply Chain Management Software – II
Figure 30:	Selection Criteria for SCM Software Solutions
Figure 31:	Worldwide Locations of Audi Group
Figure 32:	Transportation between Audi in Györ and Ingolstadt/Neckarsulm as well as Other Plants
Figure 33:	The Supply Chain of the V8 4.0l Diesel Engine
Figure 34:	Backlogs Quoted in Audi Neckarsulm's Supply Call-offs to Audi Hungaria between Week 10 and Week 26 of 2003113
Figure 35:	Wahler's Inventory Level of Thermostats between Week 10 and Week 26 of 2003115
Figure 36:	TCG Systemtechnik's Inventory Level of Thermostats between Week 10 and Week 26 of 2003116
Figure 37:	TCG Systemtechnik's Inventory Level of Water Pumps between Week 10 and Week 26 of 2003117
Figure 38:	Audi Neckarsulm's Inventory Level of V8 4.0l Diesel Engines between Week 10 and Week 26 of 2003119
Figure 39:	Ratio of Audi Neckarsulm's Demand in a Particular Week in the Final Supply Call-off, and Demand in the Same Week in the Supply Call-off Four Weeks Earlier (Calculated between Week 10 and Week 26 of 2003)126

XVII

Figure 40:	Demand Order Variability in the Supply Chain for the V8 4.0l Diesel	
	Engine	130
Figure 41:	The Architecture of the SCOptimizer	162
Figure 42:	Excerpt from an XML Description for a Solver Class	163
Figure 43:	XML Registry for at Runtime Available Distribution Planning Methods	164
Figure 44:	Excerpt from the XML Registry of Available Actors for Modeling	164
Figure 45:	Excerpt from the Description File for Warehouses	166
Figure 46:	Excerpt from the XML Description of a Desk Session	167
Figure 47:	Excerpt from a Results File for Centralized Distribution Planning	168
Figure 48:	Non-Cooperative Transportation Planning	171
Figure 49:	Centralized Cooperative Transportation Planning	171
Figure 50:	Modeling Mask of the SCOptimizer	175
Figure 51:	Selecting a Planning Method for the Vehicle Routing in the Distribution Planning	176
Figure 52:	Mask for Selecting Cooperation Degree and Cooperating Nodes	177
Figure 53:	Input Mask for the Savings Method of Clarke and Wright with Point Graph	178
Figure 54:	Tabular Display of Results for the Decentralized, Non-Cooperative	181
Figure 55:	Graphic Display of Results for the Decentralized, Non-Cooperative	182
Figure 56:	Tabular Display of Planning Results for the Decentralized, Cooperative	183
Figure 57:	Graphic Display of Results for the Decentralized, Cooperative Planning	184
Figure 58:	Tabular Display of Results for the Centralized, Cooperative Planning	185
Figure 59:	Graphical Display of Results for the Centralized, Cooperative Planning	186
Figure 60:	Exemplary Model for the Evaluation of the Bullwhip Effect	200
Figure 61.	Selecting a Planning Method for the Evaluation of the Bullwhin Effect	200

Figure 62:	Excerpt from the Description File for the Bullwhip Effect Evaluation201
Figure 63:	Option Dialog with Required Input from the Planner202
Figure 64:	Input Mask for Selecting the Degree of Cooperation202
Figure 65:	Input Mask for Determining the Characteristics of Historic Demand Data
Figure 66:	Input Mask for Selecting the Corresponding Bill of Materials203
Figure 67:	Bill of Materials for a Single-Path Supply Chain204
Figure 68:	Excerpt from the Description File for the Input Parameters for the Bullwhip Effect Evaluation
Figure 69:	Input Mask for Actor-Dependent Parameters for the Bullwhip Effect Evaluation
Figure 70:	Planner's View of the Input Table for Costs Involved in the Bullwhip Effect Evaluation
Figure 71:	Graphic Display of Results of the Bullwhip Effect Evaluation for the Decentralized, Non-Cooperative Scenario
Figure 72:	Tabular Display of Results of the Bullwhip Effect Evaluation for the Decentralized, Non-Cooperative Scenario
Figure 73:	Tabular View of Total Order Amounts in the Decentralized, Non-Cooperative Scenario
Figure 74:	Tabular View of Inventory Costs per Period in the Decentralized, Non-Cooperative Scenario
Figure 75:	Tabular View of Total Inventory Costs in the Decentralized, Non-Cooperative Scenario
Figure 76:	Graphic Display of Inventory Levels in the Decentralized, Non-Cooperative Scenario
Figure 77:	Graphic Display of Results of the Bullwhip Effect Evaluation for the Decentralized, Non-Cooperative Scenario
Figure 78:	Graphic Display of Inventory Levels in the Decentralized, Cooperative Scenario

List of Figures XIX

Figure 79:	Graphic Display of Results of the Bullwhip Effect Evaluation for the	
	Centralized, Non-Cooperative Scenario	218
Figure 80:	Graphic Display of Inventory Levels in the Centralized, Cooperative	
	Scenario	219
Figure 81:	Steps of the Computational Study	223
Figure 82:	Overview of the Experiment Design of the Computational Study	225
Figure 83:	Total Supply Chain Costs	230
Figure 84:	Results of the Centralized, Cooperative Experiments in Terms of Total	
	Supply Chain Costs	230
Figure 85:	Results of the Decentralized, Cooperative Experiments in Terms of	
	Total Supply Chain Costs	231
Figure 86:	Results of the Decentralized, Non-Cooperative Experiments in Terms of	
	Total Supply Chain Costs	231

List of Tables

Table 1:	Streams of Research Contributing to the Field of Supply Chain	
	Management	24
Table 2:	Sample Definitions for "Supply Chain"	24
Table 3:	Sample Definitions for "Supply Chain Management"	25
Table 4:	Four Main Uses of the Term "Supply Chain"	26
Table 5:	Objectives of Supply Chain Management	29
Table 6:	Commonly Used Models of Organizational Effectiveness	31
Table 7:	Decision Categories in Logistics	40
Table 8:	Examples of Services Offered by Logistics Service Providers	57
Table 9:	Examples of Cooperation between Manufacturers and LSPs	58
Table 10:	Examples of the Implementation of Merge-in-Transit	60
Table 11:	Examples of the Implementation of Cross Docking	69
Table 12:	Examples of Extensive Information Exchange between Companies	7
Table 13:	Dependencies ERP-Supply Chain Management Software Solution	93
Table 14:	Key Figures of Audi Group for 2003 and 2004	99
Table 15:	Production of Vehicles for Audi Group in 2003 and 2004	100
Table 16:	Audi AG's Position in Major Markets	101
Table 17:	Summary of Key Inventory Figures	121

Table 18:	Orders of Audi Neckarsulm, Audi Hungaria, and TCG Systemtechnik	
	between Week 10 and Week 26 of 2003 (Weekly Amounts)	124
Table 19:	Quantification of the Bullwhip Effect in the Engine Supply Chain	
	between Week 10 and Week 26 of 2003	130
Table 20:	Summary of Evaluation of Cooperation Scenarios	155
Table 21:	Lead Times between Members of the Engine Supply Chain	156
Table 22:	Vehicle Parameters	179
Table 23:	Further Input Parameters	179
Table 24:	Distance between Nodes in the Plane	180
Table 25:	Summary of Supply Chain Results of the Exemplary Evaluation of	
	Distribution Planning	187
Table 26:	Individual Performance of Cooperating Partners	188
Table 27:	End Customer's Demand per Period	206
Table 28:	Order Amounts of Each Actor for Each Period in the Decentralized,	
	Non-Cooperative Scenario	211
Table 29:	Results of the Decentralized, Non-Cooperative Scenario of the Exemplary	
	Bullwhip Effect Evaluation	213
Table 30:	Order Amounts of Each Actor for Each Period in the Decentralized,	
	Cooperative Scenario	215
Table 31:	Results of the Decentralized, Cooperative Scenario of the Exemplary	
	Bullwhip Effect Evaluation	217
Table 32:	Order Amounts of Each Actor for Each Period in the Centralized,	240
Table 22.	Cooperative Scenario	218
Table 33:	Results of the Centralized, Cooperative Scenario of the Exemplary Bullwhip Effect Evaluation	220
Table 34:	Results of the Exemplary Bullwhip Effect Evaluation	
	Key Scenario Parameters for the Creation of Experiments	
	Vehicle Transfer Costs between DCs (Fixed plus Variable Costs)	
50.	rixed plus variable Costs)	224

Table 37:	Performance of Experiments (in Percentage) with an External/Internal Vehicle Price Ratio of 0.5	222
Table 38:	Performance of Experiments (in Percentage) with an External/Internal Vehicle Price Ratio of 1.0	
Table 39:	Performance of Experiments (in Percentage) with an External/Internal Vehicle Price Ratio of 1.5	232
Table 40:	Performance of Experiments (in Percentage) in a Centralized Cooperation	233
Table 41:	Performance of Experiments (in Percentage) in a Decentralized Cooperation	233
Table 42:	Performance of Experiments (in Percentage) with No Cooperation	234
Table 43:	Individual Performance of Experiments (in Percentage) with an External/Internal Vehicle Price Ratio of 0.5	234
Table 44:	Individual Performance of Experiments (in Percentage) with an External/Internal Vehicle Price Ratio of 1.0	235
Table 45:	Individual Performance of Experiments (in Percentage) with an External/Internal Vehicle Price Ratio of 1.5	235
Table 46:	Performance of Experiments in Terms of Vehicle Costs (in Percentage) with an External/Internal Vehicle Price Ratio of 0.5	237
Table 47:	Performance of Experiments in Terms of Vehicle Costs (in Percentage) with an External/Internal Vehicle Price Ratio of 1.0	237
Table 48:	Performance of Experiments in Terms of Vehicle Costs (in Percentage) with an External/Internal Vehicle Price Ratio of 1.5	237
Table 49:	Performance of Experiments in Terms of Distance-Dependent Variable Costs for all Settings of External/Internal Vehicle Price Ratio	238
Table 50:	Performance of Experiments in Terms of Total Tours for All Settings of External/Internal Vehicle Price Ratio	239
Table 51:	Performance of Experiments in Terms of Distance per Tour for All Settings of External/Internal Vehicle Price Ratio	239
Table 52:	Performance of Experiments in Terms of Retailers per Tour for All Settings of External/Internal Vehicle Price Ratio	240

Table 53:	Performance of Experiments in Terms of Vehicle Capacity Utilization (in	
	Percent) for All Settings of External/Internal Vehicle Price Ratio	241
Table 54:	Performance of Experiments in Terms of Unused Internal Vehicles with a	
	Retailer Demand/Transportation Capacity Ratio of 0.5	241
Table 55:	Performance of Experiments in Terms of Unused Internal Vehicles with a	
	Retailer Demand/Transportation Capacity Ratio of 1.0	242
Table 56:	Performance of Experiments in Terms of Unused Internal Vehicles with a	
	Retailer Demand/Transportation Capacity Ratio of 1.5	242
Table 57:	Performance of Experiments in Terms of LSP Vehicles Retrieved with a	
	Retailer Demand/Transportation Capacity Ratio of 0.5	243
Table 58:	Performance of Experiments in Terms of LSP Vehicles Retrieved with a	
	Retailer Demand/Transportation Capacity Ratio of 1.0	243
Table 59:	Performance of Experiments in Terms of LSP Vehicles Retrieved with a	
	Retailer Demand/Transportation Capacity Ratio of 1.5	243
Table 60:	Individual Performance of Experiments in Terms of Total Costs per	
	Customer (in Percentage) with an External/Internal Vehicle Price Ratio of	
	0.5	245
Table 61:	Individual Performance of Experiments in Terms of Total Costs per	
	Customer (in Percentage) with an External/Internal Vehicle Price Ratio of	
	1.0	245
Table 62:	Individual Performance of Experiments in Terms of Total Costs per	
	Customer (in Percentage) with an External/Internal Vehicle Price Ratio of	
	1.5	246
Table 63:	Performance of Experiments in Terms of Distance per Retailer for All	
	Settings of External/Internal Vehicle Price Ratio	246
Table 64:	Performance of Experiments in Terms of Total Costs per Tour with a	
	Retailer Demand/Transportation Capacity Ratio of 0.5	247
Table 65:	Performance of Experiments in Terms of Total Costs per Tour with a	
	Retailer Demand/Transportation Capacity Ratio of 1.0	247
Table 66:	Performance of Experiments in Terms of Total Costs per Tour with a	
	Retailer Demand/Transportation Capacity Ratio of 1.5	247

List of Tables XXV

Table 67:	Individual Performance of Experiments in Terms of Potential Revenue
	Units with a Retailer Demand/Transportation Capacity Ratio of 0.5248
Table 68:	Individual Performance of Experiments in Terms of Potential Revenue
	Units with a Retailer Demand/Transportation Capacity Ratio of 1.0249
Table 69:	Individual Performance of Experiments in Terms of Potential Revenue
	Units with a Retailer Demand/Transportation Capacity Ratio of 1.5249