CONTENTS

PREFACE	ìХ
INTRODUCTION: A Brief Biography of Leonardo	
Pisano (Fibonacci) [1170-post 1240]	χV
THE BOOK OF SQUARES (Liber quadratorum)	
by Leonardo Pisano	1
[Each section is followed by a commentary by	
L.E. Sigler	
Prologue	3
Introduction	4
Proposition 1: Find two square numbers which	
sum to a square number.	5
Proposition 2: Any square number exceeds the	
square immediately before it by the sum of the	
roots.	9
Proposition 3: There is another way of finding two	
squares which make a square number with their	
sum	13

vi Contents

Proposition 4: A sequence of squares is produced	
from the ordered sums of odd numbers which	
run from 1 to infinity.	15
Proposition 5: Find two numbers so that the sum	
of their squares makes a square formed by the	
sum of the squares of two other given numbers.	18
Proposition 6: A number is obtained which is	
equal to the sum of two squares in two, three, or	
four ways.	23
Proposition 7: Find in another way a square	
number which is equal to the sum of two square	
numbers.	31
Proposition 8: Two squares can again be found	
whose sum will be the square of the sum of the	
squares of any two given numbers.	35
Proposition 9: Find two numbers which have the	
sum of their squares equal to a nonsquare	
number which is itself the sum of the squares of	
two given numbers.	36
Proposition 10: Find the sum of the squares of	
consecutive numbers from the unity to the last.	39
Proposition 11: Find the sum of the squares of	
consecutive odd numbers from the unity to the	
last.	44
Proposition 12: If two numbers are relatively prime	
and have the same parity, then the product of	
the numbers and their sum and difference is a	
multiple of twenty-four.	48
Proposition 13: The mean of symmetrically	
disposed numbers is the center.	52
Proposition 14: Find a number which added to a	
square number and subtracted from a square	
number yields always a square number.	53
Proposition 15: Square multiples of congruous	
numbers are congruous numbers.	74

Contents vii

Proposition 16: Find a congruous number which is	
a square multiple of five.	76
Proposition 17: Find a square number which	
increased or diminished by five yields a square	
number.	77
Proposition 18: If any two numbers have an even	
sum, then the ratio of their sum to their	
difference is not equal to the ratio of the larger	
to the smaller.	81
Proposition 19: Find a square number for which	
the sum and difference of it and its root is a	
square number.	84
Proposition 20: A square number is found which	
when twice its root is added or subtracted	
always makes a square number.	87
Proposition 21: For any three consecutive odd	
squares, the greatest square exceeds the middle	
square by eight more than the middle square	
exceeds the least square.	89
Proposition 22: Find in a given ratio the two	
differences among three squares.	93
Proposition 23: Find three square numbers so that	
the sum of the first and the second as well as all	
three numbers are square numbers.	105
Proposition 24: The question proposed by Master	
Theodore.	107
REFERENCES	119
INDEX OF PERSONS	121
INDEX OF TERMS	123