CONTENTS

Contributors	•
Participants	vii
Preface (in French and English)	ix
	,
Part I. Axiomatic Quantum Field Theory	1
Introduction	3
Course 1. General Properties of the n-Point Functions in Local	
Quantum Field Theory, by H. Epstein, V. Glaser and R. Stora	- 5
1. Introduction	7
2. General framework	8
3. Definition of chronological products	9
4. Generalized retarded operators	17
5. Vacuum expectation values	52
6. Linear systems of n-point functions $(n \ge 2)$	72
Appendix : Cells and precells	92
References	93
C. Ourana T. Arrestum Va of A	
Course 2. An Approach to the Non-Linear Program of General Quantum Field	
Theory: Many-Particle Structure Analysis in Complex Momentum	95
Space, by J. Bros and M. Lassalle	
1. Introduction	97
2. The non-linear structure of general quantum field theory	101
3. Convolution of n-point functions associated with a graph	105
4. One-particle irreducible n-point functions	113
5. Two-particle irreducibility in one channel	117
6. Irreducibility with respect to several channels and structural	
equations	121

properties implied by the Stidetural equations	
and outlook	128
References	134
Course 3. Generalized Optical Theorems, by K. Cahill	137
Part II. S-Matrix Theory	
Introduction	159
Course 1. Physical-Region Properties of Multiparticle Collision	
Amplitudes, by D. Iagolnitzer	161
1. The S-matrix - General properties	163
2. Space-time properties and physical-region analyticity	171
3. The structure theorem	185
References	189
Course 2. Discontinuity Formulas for Multiparticle Amplitudes,	
by H.P. Stapp	191
Introduction	195
I. Properties of Landau surfaces	195
II. Bubble diagram functions	203
III. The structure theorem	209
IV. The discontinuity of f ⁺ around L _o (D ⁺)	213
V. Derivation of the formula for the discontinuity of f around L (D*)	215
VI. Formal method	.226
VII. Basic discontinuities for 6-particle processes	239
VIII. Analytic properties of the good M ^G 's	252
IX. Analyticity in the complex mass shell	255
References to proofs of theorems	273
References	
	273
Course 3. Many-Particle Dispersion Relations, by H.P. Stapp	275
1. Toller variables	277
2. Bergman-Weil representation	279
3. Accessible boundaries	282
4. Hexagraphs	284
5. Flow graphs	285
6. Theorems on hexagraphs	291
7. Conclusions	294

Part III. Mathematical Courses	295
Analytic Structure of Distributions and Essential Support Theory,	
by D. Iagolnitzer	295
1. Introduction	297
2. Generalized Fourier transformation and local analyticity	303
3. Essential support	312
4. Decomposition and edge-of-the-wedge theorems	318
5. Products, integrals, restrictions	326
Appendix I	337
Appendix II	350
References	358
Part IV. Rigorous Results on Two-Body Scattering Amplitudes	359
Course 1. Bounds on Scattering Amplitudes and Form Factors, by	261
G. Mahoux	361
1. Introduction	363
2. Martin's method, and introduction of algebraic manifolds	364
3. Semi-phenomenological bounds on ππ scattering	370
4. Bounds for the $K_{k,3}$ scalar form factor	373
5. Hardy spaces	375
6. Solution of the problem of the $K_{\mbox{\scriptsize χ}3}$ form factor	379
References	384
Course 2. Determination of the Scattering Amplitude from the	
Differential Cross-Section:	387
	000
Contraction Mapping, by G. Mahoux	389
1. Analyticity in the cos variable, and unitarity equations	391
2. The contraction mapping principle, construction of a suitable	
Banach space, and definition of a new mapping	393
3. Contraction conditions on the cross-section	395
4. Many coupled two-body channels	398
5. Scattering of particles with spin	400
References	400
Theorems on Compactness, by D. Atkinson	403
교육하는 중요 그 사람들이 하는 사람들은 사람들이 없었다. 그렇게 살아 있는 그를 가장되었다면 하는 것 같다.	
Course 3. A Crossing Symmetric, Unitary, Regge Representation, by	
D. Atkinson	415

rart v. Regge ineory and Reggeon Calculus	427
Introduction	429
Course 1. The Analytic Foundations of Regge Theory, by A.R. White	431
1. Introduction	433
2. Background material	436
3. Partial-wave expansions, Froissart-Gribov continuations, and	
Sommerfeld-Watson representations	444
4. Cross-channel unitarity I - Location of Regge and helicity poles	
and factorization of residues	458
5. Multi-Regge asymptotic behaviour - Structure of vertex functions	
and physical region factorization	467
6. Cross-channel unitarity II - Regge cuts and their discontinuities	476
References	488
Figures	489
	100
Course 2. The Reggeon Calculus and Diffraction Scattering, by A.R. White	505
1. Introduction	507
2. Pomeron Green's functions and the Wilson renormalization group	507
formalism	511
3. Construction of the triple Pomeron theory and calculation of the	511
diffraction peak in the &-expansion	517
4. The lattice analogue-high temperature expansions and renormalization	
group transformation	531
5. The loop expansion and the Callan-Symanzik equation	538
6. Uniqueness of the solution - What happens when $\Delta > \Delta$	540
7. S-channel unitarity: the bare perturbation expansion, the	240
asymptotic scale, and production processes	
Note: Very recent developments	543
References	547
Figures	551
	553
Course 3. The Perturbative Reggeon Calculus : Building Reggeon Cuts	
from Reggeon Tree Graphs, by C.E. De Tar	565
1. Introduction	567
2. Derivation of the reggeon calculus from perturbation theory	569
3. The s-channel structure of the reggeon calculus	580
Appendix	589
References	592
	بت عد ال

593
595
595
598
602
618
633

References