Contents | List of contributors Preface | xv
xvii | |--|--| | Quadratic modules over polynomial rings
Hyman Bass | | | Introduction 1. Definitions, and background of the problem 2. Reduction by the Cancellation Theorem to low ranks 3. Quadratic spaces of low rank 4. Proof of the Cancellation Theorem 5. Proof of Karoubi's theorem References | 1
2
5
7
12
21
22 | | The action of the universal modular group on certain boundary points Lipman Bers | | | Text
References | 25
35 | | Differentially closed fields: a model-theoretic tour
Lenore Blum | | | Introduction Background Model completions Main results Some properties of differential closures and some immediate consequences Notes Appendix: Details of uniqueness proof filled in References | 37
38
39
40
41
43
55
60 | | On the hyperalgebra of a semisimple algebraic group J. E. Humphreys | | |---|--| | The hyperalgebra The algebra u, and its representations Tensor products Completely reducible G-modules Mumford's conjecture References | 203
204
208
209
209
210 | | A notion of regularity for differential local algebras Joseph Johnson | | | Introduction Some preliminary facts about Kähler differentials Regular differential algebras A sufficient condition for regularity Regular graded modules The openness of the set of regular points Regularity for Δ-fields References | 211
212
216
219
221
226
230
232 | | The Engel-Kolchin theorem revisited Irving Kaplansky | | | Introduction A second unification of Kolchin's theorem and Levitzki's theorem Two more theorems Lie and Jordan analogues The infinite case
References | 233
233
234
236
236
237 | | Prime differential ideals in differential rings William F. Keigher | | | Special differential rings The prime differential spectrum of a differential ring
References | 239
245
249 | | Constrained cohomology J. Kovacic | | | Introduction
Notation | 251
252 | | Contents | xi | |--|-----| | 1. Constrained cohomology groups | 252 | | 2. Galois cohomology | 256 | | 3. Change of group | 256 | | 4. F-Cohomology | 258 | | 5. Change of field | 259 | | 6. The Hochschild-Serre sequence | 262 | | References | 266 | | The integrability condition of deformations of CR structures | | | Masatake Kuranishi | | | Introduction | 267 | | 1. The integrability condition of CR structures | 268 | | 2. The integrability condition of deformations | 272 | | References | 278 | | Noetherian rings with many derivations | | | Hideyuki Matsumura | | | Text | 279 | | References | 293 | | Hopf maps and quadratic forms over \mathbb{Z} Takashi Ono | | | 1. Hurwitz triple and the map f | 296 | | 2. The map f and the map h | 297 | | 3. The family \mathscr{L} | 298 | | 4. Hopf fibration $S^{15} \to S^8$ over \mathbb{Z} | 302 | | References | 304 | | Families of subgroup schemes of formal groups Frans Oort | | | | | | 1. Strict families of finite subgroup schemes of formal groups | 306 | | 2. Liftability of abelian varieties | 316 | | References | 318 | | An effective lower bound on the "diophantine" approximation | | | of algebraic functions by rational functions (II) Charles F. Osgood | | | | | | Text | 321 | | References | 326 | | On elementary, generalized elementary, and liouvillifields Maxwell Rosenlicht and Michael Singer | ian extension | |---|----------------| | Text
References | 329
342 | | Derivations and valuation rings A. Seidenberg | | | Text
References | 343
347 | | On theorems of Lie-Kolchin, Borel, and Lang Robert Steinberg | | | Text
References | 349
353 | | A differential-algebraic study of the intrusion of logar
into asymptotic expansions
Walter Strodt | rithms | | A. IntroductionB. Some basic notations, procedures, and lemmas for the | 355 adjunction | | rank-rise problem C. Instability ladders for differential polynomials of Clar | 357 | | C. Instability ladders for differential polynomials of Clas D. Instability ladders for r-normal differential polynomia | s(V,r) 361 | | E. Instability ladders for asymptotically nonsingular diffusion polynomials | erential | | F. Rank-rise results for the general first-order equation | 366
367 | | G. Other rank-rise results | 370 | | Appendix | 371 | | References | 374 | | A "theorem of Lie-Kolchin" for trees J. Tits | | | J. Tits | | | Introduction | 377 | | 1. Trees | 378 | | 2. Various fixed-point properties | 380 | | 3. Solvable groups 4. Algebraic simple groups of relative rank > 2. | 381 | | 4. Algebraic simple groups of relative rank ≥ 2 5. The rank 1 case | 383 | | References | 385 | | | 388 | Contents xiii ## Regular elements in anisotropic tori F. D. Veldkamp | | Introduction | 389 | |-----|---|-----| | 1. | | 391 | | 2. | | 392 | | 3. | Classical groups | 393 | | 4. | Anisotropic tori in classical groups | 395 | | 5. | Results for the classical groups | 396 | | 6. | Type ${}^{1}A_{l}$ | 396 | | 7. | Type ${}^{1}B_{l}$ | 399 | | 8. | Type ${}^{1}C_{i}$ | 402 | | 9. | Type $^{1}D_{i}$ | 403 | | 10. | Type 2A_1 | 404 | | 11. | Type ${}^{2}D_{l}$ | 405 | | 12. | The Suzuki groups ${}^{2}C_{2}(q^{2})$ | 405 | | 13. | Groups of type 3D_4 | 406 | | 14. | Conjugacy classes in the Weyl group of F_4 | 409 | | 15. | 1 71 7 | 411 | | 16. | The Ree groups ${}^{2}F_{4}$ | 413 | | 17. | Groups of type ${}^{1}G_{2}$ | 415 | | 18. | Groups of type 2G_2 | 417 | | 19. | Endomorphisms σ with cyclic centralizer in W | 418 | | 20. | Groups of type ${}^{1}E_{6}$ | 420 | | 21. | Groups of type ${}^{2}E_{6}$ | 421 | | 22. | Groups of type ${}^{1}E_{7}$ | 422 | | 23. | Groups of type ¹ E ₈ | 423 | | | References | 424 | | | | |