Table of Contents

Editor	r's Preface	ix
Prefac	ce	xi
Introd	lucing the Contributors	xiii
СНА	PTER 1. Trends in Multidimensional Systems Theory	
	by N. K. Bose	1
1.1	Introduction	1
1.2	Multidimensional Systems Stability	3
1.3		17
1.4	<i>n</i> –D Problem of Moments and Its Applications in	
	Multidimensional Systems Theory	26
1.5	Role of Irreducible Polynomials in Multidimensional	
	Systems Theory	30
1.6	Hilbert Transform and Spectral Factorization	31
1.7		32
	References	35
CHAI	PTER 2. Multivariate Rational Approximants of the Padé-	Tvpe
	in Systems Theory by N. K. Bose	41
2.1	Introduction and Motivation	41
2.2	Multivariate Padé-Type Approximants (Scalar Case)	42
2.3	Padé-Type Matrix Approximants	47
2.4	Conclusions	48
	References	49
СНАН	PTER 3. Causal and Weakly Causal 2-D Filters with	
	Applications in Stabilization by J. P. Guiver and	
	N. K. Bose	52
3.1	Scalar 2–D Input/Output Systems	52
3.2	Stability	55
3.3	Structural Stability	60

3.4	Multi-Input/Multi-Output Systems	61
3.5	Stabilization of Scalar Feedback Systems	61
3.6	Characterization of Stabilizers for Scalar Systems	66
3.7	Stabilization of Strictly Causal Transfer Matrices	72
3.8	Characterization of Stabilizers for MIMO Systems	79
3.9	Stabilization of Weakly Causal Systems	84
3.10	O Stabilization of MIMO Weakly Causal Systems	94
3.1	1 Conclusions	98
	References	99
CHA	PTER 4. Stabilization of Linear Spatially-Distributed	
	Continuous-Time and Discrete-Time Systems	
	by E. W. Kamen	101
4.1	Introduction	101
4.2	The State Representation and Input/Output Description	107
4.3	Discretizations in Time	116
4.4	Representation in Terms of a Family of Finite-	
	Dimensional Systems	120
4.5	Stability	122
4.6	Reachability and Stabilizability	127
4.7	The Riccati Equation and Stabilizability	132
4.8	Stabilization by Dynamic Output Feedback	136
4.9	Application to Tracking	140
	Acknowledgement	144
	References	144
CHA	TER 5. Linear Shift-Variant Multidimensional Systems	
	by H. M. Valenzuela and N. K. Bose	147
5.1	Introduction	147
5.2 5.3	- 4 millor r iano State-Space Model	150
5.3 5.4	k-D State-Space Model	154
5.4 5.5	State-Space Model for the Inverse System	167
5.5 5.6	Examples of Applications	169
5.0	Conclusions	179
	References	182
CHAP	TER 6. Gröbner Bases: An Algorithmic Method in	
6.1	Polynomial Ideal Theory by B. Buchberger	184
6.2	introduction	184
0.2	Gröbner Bases	186

	TABLE OF CONTENTS	VII
6.3	Algorithmic Construction of Gröbner Bases	191
6.4	An Improved Version of the Algorithm	194
6.5	Application: Canonical Simplification, Decision of Ideal	174
	Congruence and Membership, Computation in Residue	
	Class Rings	200
6.6	Application: Solvability and Exact Solution of Systems	200
	of Algebraic Equations	207
6.7	Application: Solution of Linear Homogeneous Equations	207
0.7	with Polynomial Coefficients	2.5
6.8		217
6.9	Gröbner Bases for Polynomial Ideals over the Integers	222
	Other Applications	227
0.10	Specializations, Generalizations, Implementations,	
	Complexity	227
	Acknowledgement	229
	References	229
СНАР	TER 7. The Equation $A\mathbf{x} = \mathbf{b}$ Over the Ring $C[z, w]$	
	by J. P. Guiver	233
7.1	Introduction	233
7.2	Sufficient Condition for Solution	233
	Appendix A: Zero-Dimensional Polynomial Ideals	241
	References	244
CHAP	TER 8. Open Problems	245
	Index	261