Preface to First Edition	7
Preface to Second Edition	vii
How to Use the Book	viii
What is Mathematics?	xv
CHAPTER I. THE NATURAL NUMBERS	1
Introduction	1
§1. Calculation with Integers	1
1. Laws of Arithmetic. 2. The Representation of Integers. 3.	
Computation in Systems Other than the Decimal.	
§2. The Infinitude of the Number System. Mathematical Induction	9
1. The Principle of Mathematical Induction. 2. The Arithmetical	
Progression. 3. The Geometrical Progression. 4. The Sum of the	
First n Squares. 5. An Important Inequality. 6. The Binomial	
Theorem. 7. Further Remarks on Mathematical Induction.	
Supplement to Chapter I. The Theory of Numbers	21
Introduction	21
§1. The Prime Numbers	21
1. Fundamental Facts. 2. The Distribution of the Primes.	
a. Formulas Producing Primes. b. Primes in Arithmetical Pro-	
gressions. c. The Prime Number Theorem. d. Two Unsolved	
Problems Concerning Prime Numbers.	
§2. Congruences	31
1. General Concepts. 2. Fermat's Theorem. 3. Quadratic	
Residues.	
§3. Pythagorean Numbers and Fermat's Last Theorem	40
§4. The Euclidean Algorithm	42
1. General Theory. 2. Application to the Fundamental Theorem	
of Arithmetic. 3. Euler's φ Function. Fermat's Theorem Again.	
4. Continued Fractions. Diophantine Equations.	
CHAPTER II. THE NUMBER SYSTEM OF MATHEMATICS	52
Introduction.	52
§1. The Rational Numbers	52
1. Rational Numbers as a Device for Measuring. 2. Intrinsic Need	
for the Rational Numbers. Principle of Generalization. 3. Geo-	
metrical Interpretation of Rational Numbers.	
§2. Incommensurable Segments, Irrational Numbers, and the Concept of	F0
Limit	58
Limits. Infinite Geometrical Series. 4. Rational Numbers and	
Periodic Decimals. 5. General Definition of Irrational Numbers	
by Nested Intervals. 6. Alternative Methods of Defining Irrational Numbers. Dedekind Cuts.	
\$3. Remarks on Analytic Geometry	72
1. The Basic Principle. 2. Equations of Lines and Curves.	14
1. The pasic trinciple. 2. Equations of three sind Outles.	

§4. The Mathematical Analysis of Infinity	77
1. Fundamental Concepts. 2. The Denumerability of the Rational	
Numbers and the Non-Denumerability of the Continuum. 3.	
Cantor's "Cardinal Numbers." 4. The Indirect Method of Proof.	
5. The Paradoxes of the Infinite. 6. The Foundations of Mathematics.	
§5. Complex Numbers	88
1. The Origin of Complex Numbers. 2. The Geometrical Inter-	-
pretation of Complex Numbers. 3. De Moivre's Formula and the	
Roots of Unity. 4. The Fundamental Theorem of Algebra.	
§6. Algebraic and Transcendental Numbers	103
1. Definition and Existence. 2. Liouville's Theorem and the	
Construction of Transcendental Numbers.	
SUPPLEMENT TO CHAPTER II. THE ALGEBRA OF SETS	108
1. General Theory. 2. Application to Mathematical Logic. 3.	
An Application to the Theory of Probability.	
CHAPTER III. GEOMETRICAL CONSTRUCTIONS. THE ALGEBRA OF NUMBER	
FIELDS	117
Introduction.	117
Part I. Impossibility Proofs and Algebra	120
§1. Fundamental Geometrical Constructions.	120
1. Construction of Fields and Square Root Extraction. 2. Regular	
Polygons. 3. Apollonius' Problem.	
§2. Constructible Numbers and Number Fields	127
1. General Theory. 2. All Constructible Numbers are Algebraic. §3. The Unsolvability of the Three Greek Problems	101
1. Doubling the Cube. 2. A Theorem on Cubic Equations. 3.	134
Trisecting the Angle. 4. The Regular Heptagon. 5. Remarks on	
the Problem of Squaring the Circle.	
Part II. Various Methods for Performing Constructions	140
§4. Geometrical Transformations. Inversion.	140
1. General Remarks. 2. Properties of Inversion. 3. Geometrical	110
Construction of Inverse Points. 4. How to Bisect a Segment and	
Find the Center of a Circle with the Compass Alone.	
§5. Constructions with Other Tools. Mascheroni Constructions with	
Compass Alone	146
1. A Classical Construction for Doubling the Cube. 2. Restriction	
to the Use of the Compass Alone. 3. Drawing with Mechanical	
Instruments. Mechanical Curves. Cycloids. 4. Linkages.	
Peaucellier's and Hart's Inversors.	
§6. More About Inversion and its Applications	158
1. Invariance of Angles. Families of Circles. 2. Application to	
the Problem of Apollonius. 3. Repeated Reflections.	
CHAPTER IV. PROJECTIVE GEOMETRY. AXIOMATICS. NON-EUCLIDEAN	
GEOMETRIES	165
§1. Introduction	165
1. Classification of Geometrical Properties. Invariance under	
LINUSIDEUN HOUS X MEDIGOTIVA Transformations	

1. The Group of Projective Transformations. 2. Desargues's Theorem.	168
\$3. Cross-Ratio	179
1. Definition and Proof of Invariance. 2. Application to the Complete Quadrilateral.	
§4. Parallelism and Infinity	180
Projection. 3. Cross-Ratio with Elements at Infinity. §5. Applications	185
1. Preliminary Remarks. 2. Proof of Desargues's Theorem in the Plane. 3. Pascal's Theorem. 4. Brianchon's Theorem. 5. Remark on Duality.	
§6 Analytic Representation	191
§7. Problems on Constructions with the Straightedge Alone	196
§8. Conics and Quadric Surfaces	198
§9. Axiomatics and Non-Euclidean Geometry	214
APPENDIX. GEOMETRY IN MORE THAN THREE DIMENSIONS	227
1. Introduction. 2. Analytic Approach. 3. Geometrical or	
Combinatorial Approach.	
Chapter V. Topology	
Introduction	235
§1. Euler's Formula for Polyhedra.	
§2. Topological Properties of Figures	
§3. Other Examples of Topological Theorems	244
1. The Jordan Curve Theorem. 2. The Four Color Problem. 3.	
The Concept of Dimension. 4. A Fixed Point Theorem. 5. Knots.	050
§4. The Topological Classification of Surfaces	200
Surface. 3. One-Sided Surfaces.	
APPENDIX	264
1. The Five Color Theorem. 2. The Jordan Curve Theorem for	-0.
Polygons. 3. The Fundamental Theorem of Algebra.	
CHAPTER VI. FUNCTIONS AND LIMITS	272
Introduction	
§1. Variable and Function	273
1. Definitions and Examples. 2. Radian Measure of Angles.	
3. The Graph of a Function. Inverse Functions. 4. Compound	
Functions. 5. Continuity. 6. Functions of Several Variables.	
7 Functions and Transformations	

§2. Limits	289
1. The Limit of a Sequence a_n . 2. Monotone Sequences. 3. Euler's Number e . 4. The Number π . 5. Continued Fractions.	
§3. Limits by Continuous Approach	303
1. Introduction. General Definition. 2. Remarks on the Limit	
Concept. 3. The Limit of $\sin x/x$. 4. Limits as $x \to \infty$.	
§4. Precise Definition of Continuity	310
§5. Two Fundamental Theorems on Continuous Functions	
1. Bolzano's Theorem. 2. Proof of Bolzano's Theorem. 3. Weier-	
strass' Theorem on Extreme Values. 4. A Theorem on Sequences.	
Compact Sets.	
§6. Some Applications of Bolzano's Theorem	317
1. Geometrical Applications. 2. Application to a Problem in	
Mechanics.	
SUPPLEMENT TO CHAPTER VI. MORE EXAMPLES ON LIMITS AND CONTINUITY	322
§1. Examples of Limits	322
1. General Remarks. 2. The Limit of q^n . 3. The Limit of $\sqrt[n]{p}$.	
4. Discontinuous Functions as Limits of Continuous Functions.	
5. Limits by Iteration.	
§2. Example on Continuity	
CHAPTER VII. MAXIMA AND MINIMA	
Introduction	
§1. Problems in Elementary Geometry	330
1. Maximum Area of a Triangle with Two Sides Given. 2. Heron's	
Theorem. Extremum Property of Light Rays. 3. Applications to	
Problems on Triangles. 4. Tangent Properties of Ellipse and	
Hyperbola. Corresponding Extremum Properties. 5. Extreme	
Distances to a Given Curve.	
§2. A General Principle Underlying Extreme Value Problems	338
1. The Principle. 2. Examples.	
§3. Stationary Points and the Differential Calculus	341
1. Extrema and Stationary Points. 2. Maxima and Minima of	
Functions of Several Variables, Saddle Points, 3. Minimax	
Points and Topology. 4. The Distance from a Point to a Surface.	
§4. Schwarz's Triangle Problem	
 Schwarz's Proof. 2. Another Proof. 3. Obtuse Triangles. Triangles Formed by Light Rays. 5. Remarks Concerning 	
Problems of Reflection and Ergodic Motion.	
\$5. Steiner's Problem	254
1. Problem and Solution. 2. Analysis of the Alternatives. 3. A	
Complementary Problem. 4. Remarks and Exercises. 5 Gen-	
eralization to the Street Network Problem.	
§6. Extrema and Inequalities	361
1. The Arithmetical and Geometrical Mean of Two Positive Quanti-	
ties. 2. Generalization to n Variables. 3. The Method of Least	
Squares	

§7. The Existence of an Extremum. Dirichlet's Principle	366
1. General Remarks. 2. Examples. 3. Elementary Extremum	
Problems. 4. Difficulties in Higher Cases.	
§8. The Isoperimetric Problem	373
§9. Extremum Problems with Boundary Conditions. Connection	
Between Steiner's Problem and the Isoperimetric Problem	376
§10. The Calculus of Variations	379
1. Introduction. 2. The Calculus of Variations. Fermat's Prin-	
ciple in Optics. 3. Bernoulli's Treatment of the Brachistochrone	
Problem. 4. Geodesics on a Sphere. Geodesics and Maxi-Minima.	
§11. Experimental Solutions of Minimum Problems. Soap Film Ex-	
periments	385
1. Introduction. 2. Soap Film Experiments. 3. New Experi-	
ments on Plateau's Problem. 4. Experimental Solutions of Other	
Mathematical Problems.	
CHAPTER VIII. THE CALCULUS	
Introduction	
§1. The Integral	399
1. Area as a Limit. 2. The Integral. 3. General Remarks on the	
Integral Concept. General Definition. 4. Examples of Integration. Integration of x'. 5. Rules for the "Integral Calculus."	
	111
§2. The Derivative	414
Examples. 4. Derivatives of Trigonometrical Functions. 5. Dif-	
ferentiation and Continuity. 6. Derivative and Velocity. Second	
Derivative and Acceleration. 7. Geometrical Meaning of the	
Second Derivative. 8. Maxima and Minima.	
§3. The Technique of Differentiation	427
§4. Leibniz' Notation and the "Infinitely Small"	433
\$5. The Fundamental Theorem of the Calculus	
1. The Fundamental Theorem. 2. First Applications. Integra-	100
tion of x^r , cos x , sin x . Arc tan x . 3. Leibniz' Formula for π .	
§6. The Exponential Function and the Logarithm	442
1. Definition and Properties of the Logarithm. Euler's Number e.	
2. The Exponential Function. 3. Formulas for Differentiation of	
e^x , a^x , x^s . 4. Explicit Expressions for e , e^x , and $\log x$ as Limits.	
5. Infinite Series for the Logarithm. Numerical Calculation.	
§7. Differential Equations	453
1. Definition. 2. The Differential Equation of the Exponential	
Function. Radioactive Disintegration. Law of Growth. Com-	
pound Interest. 3. Other Examples. Simplest Vibrations. 4.	
Newton's Law of Dynamics.	
SUPPLEMENT TO CHAPTER VIII	
§1. Matters of Principle	
1. Differentiability. 2. The Integral. 3. Other Applications of	
the Concept of Integral. Work. Length.	

§2. Orders of Magnitude	469
1. The Exponential Function and Powers of x. 2. Order of Magni-	
tude of $\log (n!)$.	
§3. Infinite Series and Infinite Products	472
1. Infinite Series of Functions. 2. Euler's Formula, $\cos x + i \sin x$	
= e^{ix} . 3. The Harmonic Series and the Zeta Function. Euler's	
Product for the Sine.	
§4. The Prime Number Theorem Obtained by Statistical Methods	482
.PPENDIX: SUPPLEMENTARY REMARKS, PROBLEMS, AND EXERCISES	487
Arithmetic and Algebra	487
Analytic Geometry	488
Geometrical Constructions	494
Projective and Non-Euclidean Geometry	
Topology	
Functions, Limits, and Continuity	
Maxima and Minima	
The Calculus	502
Technique of Integration	
Suggestions for Further Reading	
NDEX	