Contents

- 1. Mathematics in Mesopotamia, 3
- 1. Where Did Mathematics Begin? 3 2. Political History in Mesopotamia, 4
- 3. The Number Symbols, 5 4. Arithmetic Operations, 7 5. Babylonian Algebra, 8
- 6. Babylonian Geometry, 10 7. The Uses of Mathematics in Babylonia, 11
- 8. Evaluation of Babylonian Mathematics, 13

2. Egyptian Mathematics, 15

- 1. Background, 15 2. The Arithmetic, 16 3. Algebra and Geometry, 18 4. Egyptian Uses of Mathematics, 21 5. Summary, 22
- 3. The Creation of Classical Greek Mathematics, 24
- Background, 24
 The General Sources, 25
 The Major Schools of the Classical Period, 27
 The Ionian School, 28
 The Pythagoreans, 28
 The Eleatic School, 34
 The Sophist School, 37
 The Platonic School, 42
 The School of Eudoxus, 48
 Aristotle and His School, 51
- 4. Euclid and Apollonius, 56
- 1. Introduction, 56 2. The Background of Euclid's Elements, 57 3. The Definitions and Axioms of the Elements, 58 4. Books I to IV of the Elements, 60 5. Book V: The Theory of Proportion, 68 6. Book VI: Similar Figures, 73 7. Books VII, VIII, and IX: The Theory of Numbers, 77 8. Book X: The Classification of Incommensurables, 80 9. Books XI, XII, and XIII: Solid Geometry and the Method of Exhaustion, 81 10. The Merits and Defects of the Elements, 86 11. Other Mathematical Works by Euclid, 88 12. The Mathematical Work of Apollonius, 89
- 5. The Alexandrian Greek Period: Geometry and Trigonometry, 101
- The Founding of Alexandria, 101
 The Character of Alexandrian Greek
 Mathematics, 103
 Areas and Volumes in the Work of Archimedes, 105
 Areas
 and Volumes in the Work of Heron, 116
 Some Exceptional Curves, 117
 The
 Creation of Trigonometry, 119
 Late Alexandrian Activity in Geometry, 126
- 6. The Alexandrian Period: The Reemergence of Arithmetic and Algebra, 131
- 1. The Symbols and Operations of Greek Arithmetic, 131 2. Arithmetic and Algebra as an Independent Development, 135

xii CONTENTS

7. The Greek Rationalization of Nature, 145

- 1. The Inspiration for Greek Mathematics, 145 2. The Beginnings of a Rational View of Nature, 146 3. The Development of the Belief in Mathematical Design, 147
- 4. Greek Mathematical Astronomy, 154 5. Geography, 160 6. Mechanics, 162
- 7. Optics, 166 8. Astrology, 168

8. The Demise of the Greek World, 171

A Review of the Greek Achievements, 171
 The Limitations of Greek
 Mathematics, 173
 The Problems Bequeathed by the Greeks, 176
 The Demise of the Greek Civilization, 177

9. The Mathematics of the Hindus and Arabs, 183

- Early Hindu Mathematics, 183
 Hindu Arithmetic and Algebra of the Period
 A.D. 200-1200, 184
 Hindu Geometry and Trigonometry of the Period
 A.D. 200-1200, 188
 The Arabs, 190
 Arabic Arithmetic and Algebra, 191
 Arabic Geometry and Trigonometry, 195
 Mathematics circa 1300, 197
- 10. The Medieval Period in Europe, 200
- The Beginnings of a European Civilization, 200
 The Materials Available for Learning, 201
 The Role of Mathematics in Early Medieval Europe, 202
 The Stagnation in Mathematics, 203
 The First Revival of the Greek Works, 205
 The Revival of Rationalism and Interest in Nature, 206
 Progress in Mathematics Proper, 209
 Progress in Physical Science, 211
 Summary, 213

11. The Renaissance, 216

- 1. Revolutionary Influences in Europe, 216 2. The New Intellectual Outlook, 218
- 3. The Spread of Learning, 220 4. Humanistic Activity in Mathematics, 221
- 5. The Clamor for the Reform of Science, 223 6. The Rise of Empiricism, 227

12. Mathematical Contributions in the Renaissance, 231

- Perspective, 231
 Geometry Proper, 234
 Algebra, 236
 Trigonometry,
 The Major Scientific Progress in the Renaissance, 240
 Remarks on the Renaissance, 247
- 13. Arithmetic and Algebra in the Sixteenth and Seventeenth Centuries, 250
- 1. Introduction, 250 2. The Status of the Number System and Arithmetic, 251
- 3. Symbolism, 259 4. The Solution of Third and Fourth Degree Equations, 263
- 5. The Theory of Equations, 270 6. The Binomial Theorem and Allied Topics, 272
- 7. The Theory of Numbers, 274 8. The Relationship of Algebra to Geometry, 278

14. The Beginnings of Projective Geometry, 285

- The Rebirth of Geometry, 285
 The Problems Raised by the Work on Perspective,
 The Work of Desargues, 288
 The Work of Pascal and La Hire, 295
- 5. The Emergence of New Principles, 299

CONTENTS

15. Coordinate Geometry, 302

The Motivation for Coordinate Geometry, 302
 The Coordinate Geometry of Fermat, 303
 René Descartes, 304
 Descartes's Work in Coordinate Geometry, 308
 Seventeenth-Century Extensions of Coordinate Geometry, 317
 The Importance of Coordinate Geometry, 321

16. The Mathematization of Science, 325

1. Introduction, 325 2. Descartes's Concept of Science, 325 3. Gali leo's Approach to Science, 327 4. The Function Concept, 335

17. The Creation of the Calculus, 342

The Motivation for the Calculus, 342
 Early Seventeenth-Century Work on the Calculus, 344
 The Work of Newton, 356
 The Work of Leibniz, 370
 A Comparison of the Work of Newton and Leibniz, 378
 The Controversy over Priority, 380
 Some Immediate Additions to the Calculus, 381
 The Soundness of the Calculus, 383

18. Mathematics as of 1700, 391

- 1. The Transformation of Mathematics, 391 2. Mathematics and Science, 394
- 3. Communication Among Mathematicians, 396 4. The Prospects for the Eighteenth Century, 398

19. Calculus in the Eighteenth Century, 400

Introduction, 400
 The Function Concept, 403
 The Technique of Integration and Complex Quantities, 406
 Elliptic Integrals, 411
 Further Special Functions, 422
 The Calculus of Functions of Several Variables, 425
 The Attempts to Supply Rigor in the Calculus, 426

20. Infinite Series, 436

Introduction, 436
 Initial Work on Infinite Series, 436
 The Expansion of Functions, 440
 The Manipulation of Series, 442
 Trigonometric Series, 454
 Continued Fractions, 459
 The Problem of Convergence and Divergence, 460

21. Ordinary Differential Equations in the Eighteenth Century, 468

- 1. Motivations, 468 2. First Order Ordinary Differential Equations, 471
- 3. Singular Solutions, 476 4. Second Order Equations and the Riccati Equations, 478
- 5. Higher Order Equations, 484 6. The Method of Series, 488 7. Systems of Differential Equations, 490 8. Summary, 499

22. Partial Differential Equations in the Eighteenth Century, 502

- 1. Introduction 502 2. The Wave Equation, 503 3. Extensions of the Wave Equation,
- 515 4. Potential Theory, 522 5. First Order Partial Differential Equations, 531
- Monge and the Theory of Characteristics, 536
 Monge and Nonlinear Second Order Equations, 538
 Systems of First Order Partial Differential Equations, 540
 The Rise of the Mathematical Subject, 542

xiv CONTENTS

23. Analytic and Differential Geometry in the Eighteenth Century, 544

- 1. Introduction, 544 2. Basic Analytic Geometry, 544 3. Higher Plane Curves, 547
- 4. The Beginnings of Differential Geometry, 554
 5. Plane Curves, 555
 6. Space Curves, 557
 7. The Theory of Surfaces, 562
 8. The Mapping Problem, 570

24. The Calculus of Variations in the Eighteenth Century, 573

1. The Initial Problems, 573 2. The Early Work of Euler, 577 3. The Principle of Least Action, 579 4. The Methodology of Lagrange, 582 5. Lagrange and Least Action, 587 6. The Second Variation, 589

25. Algebra in the Eighteenth Century, 592

- 1. Status of the Number System, 592 2. The Theory of Equations, 597
- 3. Determinants and Elimination Theory, 606 4. The Theory of Numbers, 608

26. Mathematics as of 1800, 614

The Rise of Analysis, 614
 The Motivation for the Eighteenth-Century Work,
 3. The Problem of Proof, 617
 The Metaphysical Basis, 619
 The Expansion of Mathematical Activity, 621
 A Glance Ahead, 623

27. Functions of a Complex Variable, 626

Introduction, 626
 The Beginnings of Complex Function Theory, 626
 The Geometrical Representation of Complex Numbers, 628
 The Foundation of Complex Function Theory, 632
 Weierstrass's Approach to Function Theory, 642
 Elliptic Functions, 644
 Hyperelliptic Integrals and Abel's Theorem, 651
 Riemann and Multiple-Valued Functions, 655
 Abelian Integrals and Functions, 663
 Conformal Mapping, 666
 The Representation of Functions and Exceptional Values, 667

28. Partial Differential Equations in the Nineteenth Century, 671

Introduction, 671
 The Heat Equation and Fourier Series, 671
 Closed Solutions; the Fourier Integral, 679
 The Potential Equation and Green's Theorem, 681
 Curvilinear Coordinates, 687
 The Wave Equation and the Reduced Wave Equation, 690
 Systems of Partial Differential Equations, 696
 Existence Theorems, 699

29. Ordinary Differential Equations in the Nineteenth Century, 709

Introduction, 709
 Series Solutions and Special Functions, 709
 Sturm-Liouville Theory, 715
 Existence Theorems, 717
 The Theory of Singularities, 721
 Automorphic Functions, 726
 Hill's Work on Periodic Solutions of Linear Equations, 730
 Nonlinear Differential Equations: The Qualitative Theory, 732

30. The Calculus of Variations in the Nineteenth Century, 739

- 1. Introduction, 739 2. Mathematical Physics and the Calculus of Variations, 739
- 3. Mathematical Extensions of the Calculus of Variations Proper, 745 4. Related Problems in the Calculus of Variations, 749

CONTENTS XV

31. Galois Theory, 752

Introduction, 752
 Binomial Equations, 752
 Abel's Work on the Solution of Equations by Radicals, 754
 Galois's Theory of Solvability, 755
 The Geometric Construction Problems, 763
 The Theory of Substitution Groups, 764

32. Quaternions, Vectors, and Linear Associative Algebras, 772

- 1. The Foundation of Algebra on Permanence of Form, 772 2. The Search for a Three-Dimensional "Complex Number," 776 3. The Nature of Quaternions, 779
- 4. Grassman's Calculus of Extension, 782 5. From Quaternions to Vectors, 785
- 6. Linear Associative Algebras, 791

33. Determinants and Matrices, 795

1. Introduction, 795 2. Some New Uses of Determinants, 795 3. Determinants and Quadratic Forms, 799 4. Matrices, 804

34. The Theory of Numbers in the Nineteenth Century, 813

Introduction, 813
 The Theory of Congruences, 813
 Algebraic Numbers, 818
 The Ideals of Dedekind, 822
 The Theory of Forms, 826
 Analytic Number Theory, 829

35. The Revival of Projective Geometry, 834

- 1. The Renewal of Interest in Geometry, 834 2. Synthetic Euclidean Geometry, 837
- The Revival of Synthetic Projective Geometry, 840
 Algebraic Projective Geometry, 852
 Higher Plane Curves and Surfaces, 855

36. Non-Euclidean Geometry, 861

- 1. Introduction, 861 2. The Status of Euclidean Geometry About 1800, 861
- The Research on the Parallel Axiom, 863
 Foreshadowings of Non-Euclidean Geometry, 867
 The Creation of Non-Euclidean Geometry, 869
 The Technical Content of Non-Euclidian Geometry, 874
 The Claims of Lobatchevsky and Bolyai to Priority, 877
 The Implications of Non-Euclidean Geometry, 879

37. The Differential Geometry of Gauss and Riemann, 882

Introduction, 882
 Gauss's Differential Geometry, 882
 Riemann's Approach to Geometry, 889
 The Successors of Riemann, 896
 Invariants of Differential Forms, 899

38. Projective and Metric Geometry, 904

- 1. Introduction, 904 2. Surfaces as Models of Non-Euclidean Geometry, 904
- 3. Projective and Metric Geometry, 906 4. Models and the Consistency Problem,
- 913 5. Geometry from the Transformation Viewpoint, 917 6. The Reality of Non-Euclidean Geometry, 921

39. Algebraic Geometry, 924

Background, 924
 The Theory of Algebraic Invariants, 925
 The Concept of Birational Transformations, 932
 The Function-Theoretic Approach to Algebraic

xvi CONTENTS

Geometry, 934 5. The Uniformization Problem, 937 6. The Algebraic-Geometric Approach, 939 7. The Arithmetic Approach, 942 8. The Algebraic Geometry of Surfaces, 943

40. The Instillation of Rigor in Analysis, 947

- Introduction, 947
 Functions and Their Properties, 949
 The Derivative, 954
 The Integral, 956
 Infinite Series, 961
 Fourier Series, 966
 The Status of Analysis, 972
- 41. The Foundations of the Real and Transfinite Numbers, 979
- Introduction, 979
 Algebraic and Transcendental Numbers, 980
 The Theory of Irrational Numbers, 982
 The Theory of Rational Numbers, 987
 Other
 Approaches to the Real Number System, 990
 The Concept of an Infinite Set, 992
 The Foundation of the Theory of Sets, 994
 Transfinite Cardinals and Ordinals, 998
 The Status of Set Theory by 1900, 1002

42. The Foundations of Geometry, 1005

 The Defects in Euclid, 1005
 Contributions to the Foundations of Projective Geometry, 1007
 The Foundations of Euclidean Geometry, 1010
 Some Related Foundational Work, 1015
 Some Open Questions, 1017

43. Mathematics as of 1900, 1023

The Chief Features of the Nineteenth-Century Developments, 1023
 The Axiomatic Movement, 1026
 Mathematics as Man's Creation, 1028
 The Loss of Truth, 1032
 Mathematics as the Study of Arbitrary Structures, 1036
 The Problem of Consistency, 1038
 A Glance Ahead, 1039

44. The Theory of Functions of Real Variables, 1040

 The Origins, 1040
 The Stieltjes Integral, 1041
 Early Work on Content and Measure, 1041
 The Lebesgue Integral, 1044
 Generalizations, 1050

45. Integral Equations, 1052

Introduction, 1052
 The Beginning of a General Theory, 1056
 The Work of Hilbert, 1060
 The Immediate Successors of Hilbert, 1070
 Extensions of the Theory, 1073

46. Functional Analysis, 1076

- 1. The Nature of Functional Analysis, 1076 2. The Theory of Functionals, 1077
- 3. Linear Functional Analysis, 1081 4. The Axiomatization of Hilbert Space, 1091

47. Divergent Series, 1096

Introduction, 1096
 The Informal Uses of Divergent Series, 1098
 The Formal Theory of Asymptotic Series, 1103
 Summability, 1109

CONTENTS xvii

48. Tensor Analysis and Differential Geometry, 1122

The Origins of Tensor Analysis, 1122
 The Notion of a Tensor, 1123
 Covariant Differentiation, 1127
 Parallel Displacement, 1130
 Generalizations of Riemannian Geometry, 1133

49. The Emergence of Abstract Algebra, 1136

The Nineteenth-Century Background, 1136
 Abstract Group Theory, 1137
 The Abstract Theory of Fields, 1146
 Rings, 1150
 Non-Associative Algebras, 1153
 The Range of Abstract Algebra, 1156

50. The Beginnings of Topology, 1158

- The Nature of Topology, 1158
 Point Set Topology, 1159
 The Beginnings of Combinatorial Topology, 1163
 The Combinatorial Work of Poincaré, 1170
 Combinatorial Invariants, 1176
 Fixed Point Theorems, 1177
 Generalizations and Extensions, 1179
- 51. The Foundations of Mathematics, 1182

Introduction, 1182
 The Paradoxes of Set Theory, 1183
 The Axiomatization of Set Theory, 1185
 The Rise of Mathematical Logic, 1187
 The Logistic School, 1192
 The Intuitionist School, 1197
 The Formalist School, 1203
 Some Recent Developments, 1208

List of Abbreviations, 1213 Index, 1217