Contents

Chapter I. The nature of Culture and Cultural Systems]
1. Evolution of a cultural artifact	3
2. The things that make up a culture	6
3. Culture as a collection of elements in a communications	
network	8
4. Mathematics as a cultural system	14
5. Cultural and conceptual evolution	17
Chapter II. Examples of Cultural Patterns Observable in the	
Evolution of Mathematics	21
1. Multiples	22
2. "Clustering of genius"	23
3. The "before his time" phenomenon	24
4. The operation of cultural lag in mathematics	25
5. Patterns of thought. Mathematical reality and	
mathematical existence	27
6. Evolution of greater abstraction	30
7. Forced origins of new concepts	33
8. Selection in mathematics	35
9. The effect of the occurrence of paradox, or the discovery	
of inconsistency	37
10. The relativity of mathematical rigor	39
11. Growth patterns of fields of mathematics	41
12. A problem	45
Chapter III. Historical Episodes; a Laboratory for the Study of	
Cultural Change	47
1. The great diffusions	48
2. Symbolic achievements	49

X MATHEMATICS AS A CULTURAL SYSTEM

3. Pressure from the environment; environmental stress	54
4. Motivation for multiple invention; exceptions to the rule	55
5. The great consolidations	58
6. Leaps in abstraction	60
7. Great generalizations	64
hapter IV. Potential of a Theory or Field; Hereditary Stress	66
1. Hereditary stress	67
2. Components of hereditary stress	68
(i) Capacity	68
(ii) Significance	70
(iii) Challenge	72
(iv) Conceptual stress	73
(1) Symbolic stress	73
(2) Problems whose solution requires new concepts(3) Stress for creating order among alternative	75
theories	76
(4) New attitudes toward mathematical existence	77
(v) Status	80
(vi) Paradox and/or inconsistency	81
3. General remarks	82
hapter V. Consolidation: Force and Process	84
Part I. General theory	85
Ia. Consolidation as a social or cultural phenomenon	88
Ib. Effects of diffusion	89
Part II. The consolidation process in mathematics	91
Part IIa. Examples	91
IIb. Cultural lag and cultural resistance in the	
consolidation process	100
IIc. Analysis	102
Part III. Concluding remarks	103
hapter VI. The Exceptional Individual; Singularities in the	
Evolution of Mathematics	105
1. General remarks. Mendel, Bolzano, Desargues	105
2. Historical background of Desargues' work	108
2a. Girard Desargues and "PG 17"	109
5	

	CONTENTS X
3. Why was PG17 not developed into a field?	112
3a. The mathematical environment of the 17	7th century 11;
3b. The internal nature of PG17	11:
4. Avenues of possible survival	117
5. The success of projective geometry in the 19	th century 118
6. General characteristics of the "before-his-tin	
phenomenon	12
6a. The premat as a loner	122
6b. Tendency of the premat to create a vocal	oulary that
repels possible readers	123
6c. The capacity and significance of the new	concepts
embodied in the prematurity not recogni	zed 123
6d. The culture not ready to incorporate and	extend the
new concepts embodied in the prematuri	ty 124
6e. Lack of personal status of the premat in the	
community	124
6f. Insufficient diffusion of the new ideas pr	esented
by the prematurity	124
6g. An unusual combination of interests on	
the premat	12:
7. Comment	12:
Chapter VII. "Laws" Governing the Evolution of M	athematics 120
1. Law governing multiple discovery	123
la. Law governing first proof of a theorem	127
2. Law re. acceptance of a new concept	123
3. Law re. evolution of new concepts	128
4. Law re. the status of creator of a new concer	ot 129
5. Law re. continued importance of a concept	129
6. Law re. the solution of an important problem	n 130
7. Law re. the occurrence of consolidation	13:
7a. Law of consolidation	132
8. Law re. interpretation of "unreal" concepts	132
9. Law re. the cultural intuition	133
10. Law re. diffusion	13:
11. Law re. environmental stresses	138

12. Law re. great advances or breakthroughs

140

xii MATHEMATICS AS A CULTURAL SYSTEM

13. Law re. inadequacies of a conceptual structure	141
14. Law re. revolutions in mathematics	142
15. Law re. mathematical rigor	144
16. Law re. evolution of a mathematical system	145
17. Law re. the individual and mathematics	145
18. Law re. mathematics becoming "worked out"	146
19. Law re. beginnings	146
20. Law re. ultimate foundation of mathematics	147
21. Law re. hidden assumptions	147
22. Law re. emergence of periods of great activity	148
23. Law re. absolutes in mathematics	148
Chapter VIII. Mathematics in the 20th Century; Role and Future	149
1. The place of mathematics in 20th-century culture	149
2. Future "dark ages?"	150
3. The role of mathematics in the 20th century	152
4. The uses of mathematics in the natural and social sciences	156
5. Relevance to historiography	160
Appendix: Footnote for the Aspiring Mathematician	164
Bibliography	167
Index	173
index	1 /