CONTENTS ## Invited lectures | Α. | . Supersymmetry and graded Lie algebras | | | | |----|--|---------------|--|--| | | V. Rittenberg: A guide to Lie superalgebras | 3 | | | | | 2. S. Ferrara: Supergravity in the physics of particles and fields | 22 | | | | | 3. B. Kostant: Harmonic analysis on graded (or super) Lie groups | 47 | | | | | | | | | | в. | Concepts of symmetry and disorder arising from molecular | physics
51 | | | | | A. Kerber: The diagram lattice as structural principle in mathematics | 53 | | | | | 2. H. Primas: Kinematical symmetries in molecular quantum mechanics | 72 | | | | | 3. H. Frei and Hs. H. Günthard:
Symmetry of non-rigid molecules | 92 | | | | | | | | | | c. | Symplectic structures and many-body physics | | | | | | 1. S. Sternberg:
Some recent results on the metaplectic representation | 117 | | | | | 2. D.J. Rowe and G. Rosensteel: The nuclear collective model and the symplectic group | 144 | | | | | 3. A. Grossmann: Geometry of real and complex canonical transformations in quantum mechanics | s
162 | | | | | 4. P. Kramer: Composite particles and symplectic (semi-)groups | 180 | | | | D. | Symmetry breaking in statistical mechanics and field theory | 201 | |--|--|-----| | | 1. J.L. Birman:
Group theory of the Landau-thermodynamic theory of
continuous phase transitions in crystals | 203 | | | <pre>2. G.G. Emch: Phase transitions, approach to equilibrium, and structural stability</pre> | 223 | | | 3. L. Michel:
Topological classification of symmetry defects in
ordered media | 247 | | | 4. H.P. Dürr: Dynamical origin of symmetry | 259 | | | | | | E. Automata and systems as examples of applied (semi-)group theo | | | | | C. Lobry: Action of control semigroups on manifold and application to realization theory | 283 | | | H. Jürgensen:
Some applications of the theory of semigroups to
automata | 307 | | | | | | F. | Renormalization group and critical phenomena | 323 | | | J.M.J. van Leeuwen: Position space renormalization group | 325 | | | | | | G. | Gauge fields | 343 | | | L. O'Raifeartaigh:
Static solitons in more than one dimension | 345 | ## Contributed papers | Ι. | Sur | persymmetry, symmetry in particle and relativistic physics | 357 | |----|-----|---|-----| | | 1. | S. Albeverio and R. Høegh-Krohn: Remarks on the energy representation of Sobolev-Lie groups | 359 | | | 2. | J.P. Antoine and C. Malou:
Unbounded representations of the Poincaré and Gauge groups
in the indefinite metric quantization of the electro- | 361 | | | 3 | magnetic field N. Backhouse: | 301 | | | ٥. | On the construction of graded Lie algebras | 364 | | | 4. | L.C. Biedenharn and L.P. Horwitz:
Exceptional parafermions in a Hilbert space over an
associative algebra | 367 | | | 5. | G. Burdet and M. Perrin:
The SU(4) nuclear symmetry revisited | 370 | | | 6. | J.P. Dahl:
The spinning electron | 373 | | | 7. | M. Daumens, M. Perroud and P. Winternitz:
Group theoretical expansions of scattering amplitudes
for particles with spin | 376 | | | 8. | F. González-Gascón:
On the extension of vector fields and the superluminal
transformations | 379 | | | 9. | H. Hoogland:
A group theoretical derivation of the minimal coupling
in elementary quantum mechanics | 382 | | | 10. | H. Nicolai: Towards a constructive approach to supersymmetric $\boldsymbol{\varphi}^3$ | 385 | | | 11. | J. Patera, P. Winternitz and H. Zassenhaus:
The maximal abelian subgroups of the conformal group
of space-time | 388 | | | 12. | T.S. Santhanam: The exceptional groups as candidates for supersymmetry | 391 | | | 13. | Dj. Šijački: Quark bag excitations, SL(3,R) spectrum generating group | 394 | | II. | Syr | mmetry in molecular and solid state physics | 397 | |------|-----|---|-----| | | 1. | M. Boon and J. Zak:
Completeness of networks of states | 399 | | | 2. | P.M. van den Broek:
PUA representations of Shubnikov space groups and
selction rules | 402 | | | 3. | A.P. Cracknell and B.L. Davies:
Computer programs for determining wave vector selection
rules (WVSRs) for space groups | 405 | | | 4. | B.L. Davies and A.P. Cracknell:
Results of computer programs for determining the
reductions of the Kronecker products of the irreducible
representations of space groups | 408 | | | 5. | R. Dirl:
Compatibility relations for factor systems and space
group representations | 411 | | | 6. | A. Janner and T. Janssen:
Bravais lattices associated with incommensurate crystal
phases | 414 | | | 7. | B.R. Judd:
Ligand polarizations and lanthanide ion spectra | 417 | | | 8. | R.W.J. Roel:
Basic exchange integrals and the triple double coset
symbol | 420 | | III. | Bro | oken symmetry and phase transitions | 423 | | | 1. | G. De Concini and G. Vitiello:
Group Contractions and infrared effect in theories with
spontaneous breakdown of symmetry | 425 | | | 2. | F. Constantinescu and H.M. Ruck:
Instantons in lattice models with discrete symmetries | 429 | | | 3. | M. Hongoh and D. Matz:
Spontaneous breakdown of symmetry and the generalized
coherent states | 432 | | | 4. | M.V. Jarić and J.L. Birman: Molien function and calculation of invariant polynomials for space groups | 436 | | | | A.J. Kálnay: Gauge fields and quantum liquids | 111 | | | 6. | P. Kasperkovitz:
A new model of a structural phase transition | 444 | |-----|----|--|-------------| | | 7. | L. Michel and J. Mozrzymas: Application of Morse theory to the symmetry breaking in the Landau theory of second order phase transition | 447 | | | 8. | J.P. Provost and G. Vallee:
Spontaneous breakdown of the gauge symmetry and
observable phase operator | 462 | | ıv. | St | ructure of groups and dynamical systems | 465 | | | 1. | M. Dal Cin and E. Dilger:
Semigroups and effective structures of automata | 467 | | | 2. | L.L. Boyle and K.F. Green:
Studies of some physically-relevant representation groups | 470 | | | 3. | E. Dilger:
Effective decompositions of automata | 4 73 | | | 4. | M. Hazewinkel:
On invariants and canonical forms for linear dynamical
systems | 476 | | | 5. | B. Kümmerer: Mean ergodic semigroups of contractions in \mathbf{W}^{*} - algebras | 479 | | ٧. | Re | presentations of groups and Lie algebras | 483 | | | 1. | C. Bretin and J.P. Gazeau: About some series associated to complex semi-simple Lie algebras | 485 | | | 2. | J.P. Gazeau, M.Cl. Dumont-Lepage and A. Ronveaux: Gelfand lattice polynomials and finite irreducible representations of $GL(n, \mathcal{C})$ | 488 | | | 3. | J.W.B. Hughes:
Partitions of integers and Lie algebras | 491 | | | 4. | Y. Ilamed:
Lie elements, the killing form and trace identities | 494 | | | 5. | R.C. King and A.H.A. Qubanchi: Branching Rule $SO(7) \rightarrow G_2$ | 497 | | | 6. | W. Laskar:
Simplified Racah's eigenvalue formula for the second
order Casimir operator | 500 | | | 7. | K. Srinivasa Rao:
A note on the series expansions for the Racah coefficient | 503 | |-----|------------|---|-----| | | 8. | J. Yadegar:
Construction of O(3) shift operators and their use in
classification of Lie algebras | 506 | | ٧ı. | <u>Ger</u> | neral symmetries, quantization | 509 | | | 1. | F.J. Bloore and S. Swarbrick:
Wave functions of identical particles | 511 | | | 2. | M. Brunet: The metaplectic Semigroup and the implementation of complex linear canonical transformations in quantum mechanics | 512 | | | 3. | G. Burdet and M. Perrin:
Weyl quantization and metaplectic representation | 515 | | | 4. | U. Cattaneo: On quantum mechanical symmetry groups | 518 | | | 5. | P. Kramer, M. Moshinsky and T.H. Seligman:
Non-bijective canonical transformations and their
representations in quantum mechanics | 521 | | | 6. | U. Niederer:
Kinematical symmetries of the nonlinear diffusion
equations | 522 | | | 7. | J.F. Pommaret:
Lie pseudogroups and the structure of physical laws | 525 | | | 8. | A. Rieckers:
Equivalence of Kadison and Wigner symmetries in
traditional quantum mechanics | 528 | | | 9. | M. Romerio: The coherent states associated with a compact semi- simple Lie group | 531 | | | 10. | R.N. Sen:
Theory of symmetry of infinite systems | 534 | | | 11. | M.C. Singh: Group theoretic approach to similarity analysis with applications to the problems of wave propagation | 537 | | | 12. | I. Szczyrba:
Generalized number operator in the Fock representation | 540 | | | 13. | J. Tolar: Quantization and deformation theory | 543 |