CONTENTS

Invited lectures

Α.	. Supersymmetry and graded Lie algebras			
	 V. Rittenberg: A guide to Lie superalgebras 	3		
	2. S. Ferrara: Supergravity in the physics of particles and fields	22		
	3. B. Kostant: Harmonic analysis on graded (or super) Lie groups	47		
в.	Concepts of symmetry and disorder arising from molecular	physics 51		
	 A. Kerber: The diagram lattice as structural principle in mathematics 	53		
	2. H. Primas: Kinematical symmetries in molecular quantum mechanics	72		
	3. H. Frei and Hs. H. Günthard: Symmetry of non-rigid molecules	92		
c.	Symplectic structures and many-body physics			
	1. S. Sternberg: Some recent results on the metaplectic representation	117		
	2. D.J. Rowe and G. Rosensteel: The nuclear collective model and the symplectic group	144		
	3. A. Grossmann: Geometry of real and complex canonical transformations in quantum mechanics	s 162		
	4. P. Kramer: Composite particles and symplectic (semi-)groups	180		

D.	Symmetry breaking in statistical mechanics and field theory	201
	1. J.L. Birman: Group theory of the Landau-thermodynamic theory of continuous phase transitions in crystals	203
	<pre>2. G.G. Emch: Phase transitions, approach to equilibrium, and structural stability</pre>	223
	3. L. Michel: Topological classification of symmetry defects in ordered media	247
	4. H.P. Dürr: Dynamical origin of symmetry	259
E. Automata and systems as examples of applied (semi-)group theo		
	 C. Lobry: Action of control semigroups on manifold and application to realization theory 	283
	H. Jürgensen: Some applications of the theory of semigroups to automata	307
F.	Renormalization group and critical phenomena	323
	J.M.J. van Leeuwen: Position space renormalization group	325
G.	Gauge fields	343
	L. O'Raifeartaigh: Static solitons in more than one dimension	345

Contributed papers

Ι.	Sur	persymmetry, symmetry in particle and relativistic physics	357
	1.	S. Albeverio and R. Høegh-Krohn: Remarks on the energy representation of Sobolev-Lie groups	359
	2.	J.P. Antoine and C. Malou: Unbounded representations of the Poincaré and Gauge groups in the indefinite metric quantization of the electro-	361
	3	magnetic field N. Backhouse:	301
	٥.	On the construction of graded Lie algebras	364
	4.	L.C. Biedenharn and L.P. Horwitz: Exceptional parafermions in a Hilbert space over an associative algebra	367
	5.	G. Burdet and M. Perrin: The SU(4) nuclear symmetry revisited	370
	6.	J.P. Dahl: The spinning electron	373
	7.	M. Daumens, M. Perroud and P. Winternitz: Group theoretical expansions of scattering amplitudes for particles with spin	376
	8.	F. González-Gascón: On the extension of vector fields and the superluminal transformations	379
	9.	H. Hoogland: A group theoretical derivation of the minimal coupling in elementary quantum mechanics	382
	10.	H. Nicolai: Towards a constructive approach to supersymmetric $\boldsymbol{\varphi}^3$	385
	11.	J. Patera, P. Winternitz and H. Zassenhaus: The maximal abelian subgroups of the conformal group of space-time	388
	12.	T.S. Santhanam: The exceptional groups as candidates for supersymmetry	391
	13.	Dj. Šijački: Quark bag excitations, SL(3,R) spectrum generating group	394

II.	Syr	mmetry in molecular and solid state physics	397
	1.	M. Boon and J. Zak: Completeness of networks of states	399
	2.	P.M. van den Broek: PUA representations of Shubnikov space groups and selction rules	402
	3.	A.P. Cracknell and B.L. Davies: Computer programs for determining wave vector selection rules (WVSRs) for space groups	405
	4.	B.L. Davies and A.P. Cracknell: Results of computer programs for determining the reductions of the Kronecker products of the irreducible representations of space groups	408
	5.	R. Dirl: Compatibility relations for factor systems and space group representations	411
	6.	A. Janner and T. Janssen: Bravais lattices associated with incommensurate crystal phases	414
	7.	B.R. Judd: Ligand polarizations and lanthanide ion spectra	417
	8.	R.W.J. Roel: Basic exchange integrals and the triple double coset symbol	420
III.	Bro	oken symmetry and phase transitions	423
	1.	G. De Concini and G. Vitiello: Group Contractions and infrared effect in theories with spontaneous breakdown of symmetry	425
	2.	F. Constantinescu and H.M. Ruck: Instantons in lattice models with discrete symmetries	429
	3.	M. Hongoh and D. Matz: Spontaneous breakdown of symmetry and the generalized coherent states	432
	4.	M.V. Jarić and J.L. Birman: Molien function and calculation of invariant polynomials for space groups	436
		A.J. Kálnay: Gauge fields and quantum liquids	111

	6.	P. Kasperkovitz: A new model of a structural phase transition	444
	7.	L. Michel and J. Mozrzymas: Application of Morse theory to the symmetry breaking in the Landau theory of second order phase transition	447
	8.	J.P. Provost and G. Vallee: Spontaneous breakdown of the gauge symmetry and observable phase operator	462
ıv.	St	ructure of groups and dynamical systems	465
	1.	M. Dal Cin and E. Dilger: Semigroups and effective structures of automata	467
	2.	L.L. Boyle and K.F. Green: Studies of some physically-relevant representation groups	470
	3.	E. Dilger: Effective decompositions of automata	4 73
	4.	M. Hazewinkel: On invariants and canonical forms for linear dynamical systems	476
	5.	B. Kümmerer: Mean ergodic semigroups of contractions in \mathbf{W}^{*} - algebras	479
٧.	Re	presentations of groups and Lie algebras	483
	1.	C. Bretin and J.P. Gazeau: About some series associated to complex semi-simple Lie algebras	485
	2.	J.P. Gazeau, M.Cl. Dumont-Lepage and A. Ronveaux: Gelfand lattice polynomials and finite irreducible representations of $GL(n, \mathcal{C})$	488
	3.	J.W.B. Hughes: Partitions of integers and Lie algebras	491
	4.	Y. Ilamed: Lie elements, the killing form and trace identities	494
	5.	R.C. King and A.H.A. Qubanchi: Branching Rule $SO(7) \rightarrow G_2$	497
	6.	W. Laskar: Simplified Racah's eigenvalue formula for the second order Casimir operator	500

	7.	K. Srinivasa Rao: A note on the series expansions for the Racah coefficient	503
	8.	J. Yadegar: Construction of O(3) shift operators and their use in classification of Lie algebras	506
٧ı.	<u>Ger</u>	neral symmetries, quantization	509
	1.	F.J. Bloore and S. Swarbrick: Wave functions of identical particles	511
	2.	M. Brunet: The metaplectic Semigroup and the implementation of complex linear canonical transformations in quantum mechanics	512
	3.	G. Burdet and M. Perrin: Weyl quantization and metaplectic representation	515
	4.	U. Cattaneo: On quantum mechanical symmetry groups	518
	5.	P. Kramer, M. Moshinsky and T.H. Seligman: Non-bijective canonical transformations and their representations in quantum mechanics	521
	6.	U. Niederer: Kinematical symmetries of the nonlinear diffusion equations	522
	7.	J.F. Pommaret: Lie pseudogroups and the structure of physical laws	525
	8.	A. Rieckers: Equivalence of Kadison and Wigner symmetries in traditional quantum mechanics	528
	9.	M. Romerio: The coherent states associated with a compact semi- simple Lie group	531
	10.	R.N. Sen: Theory of symmetry of infinite systems	534
	11.	M.C. Singh: Group theoretic approach to similarity analysis with applications to the problems of wave propagation	537
	12.	I. Szczyrba: Generalized number operator in the Fock representation	540
	13.	J. Tolar: Quantization and deformation theory	543