Contents

	Preface to the Second Edition vii								
	Foreword to the First Edition xi								
	Preface to the First Edition xiii								
			nowledgements xv						
·									
1			on: vision from a biological viewpoint 1						
	1.1	Input pathways of the mammalian visual system 2							
	1.2		volution of vision in vertebrates 5						
			The functions of vision 5						
		1.2.2	Visuomotor modules in						
			non-mammalian vertebrates 7						
	1.3		nalian vision 12						
			Traditional approaches 12						
			Visuomotor modules in mammals 14						
		1.3.3	'Two visual systems' hypotheses 21						
2	Visu	ıal pro	cessing in the primate visual cortex 25						
2.1 Evidence for parallel processing in retinal ganglion cell									
		2.1.1	'On' and 'off' responses 25						
		2.1.2	X, Y, and W cells 26						
2.2 Parallel channels within the primate									
		genicu	ılostriate pathway 27						
		2.2.1	Magno and parvo channels 27						
		2.2.2	Magno and parvo projections						
			to the extrastriate cortex 31						
	2.3	Does	magno/parvo map onto dorsal/ventral? 33						
		2.3.1	The Livingstone and Hubel proposal 33						
		2.3.2	Contrary evidence 34						
		2.3.3	Extrageniculate inputs 36						
		2.3.4	Summary 38						
	2.4	The o	rganization of the dorsal and ventral						
		streams: a proposed model 39							
	2.5	Visual processing within the dorsal stream 42							
		2 5 1	Neuronal activity and visuomotor guidance 42						

2.5.2 Coding of space for action 45

2.5.3	Coding	of	visual	motion	for	action	40
-------	--------	----	--------	--------	-----	--------	----

- 2.5.4 Coding of object properties for action 51
- 2.5.5 Modularity within the dorsal stream 54
- 2.6 Visual processing within the ventral stream 58
 - Neuronal coding for visual perception and recognition 58
 - 2.6.2 What is visual perception for? 63
- 2.7 Conclusions: perception versus action 65
- 3 'Cortical blindness' 67
 - 3.1 Introduction 67
 - 3.2 'Blindsight': action without perception? 68
 - 3.2.1 'Cortical blindness' 68
 - 3.2.2 The pupillary response and GSR 69
 - 3.2.3 Guidance of reaching and grasping 70
 - 3.2.4 Detection and discrimination in blindsight 77
 - 3.2.5 Colour processing in blindsight 81
 - 3.2.6 Motion processing in blindsight 83
 - 3.3 Why is blindsight blind? 85
 - 3.4 Conclusions 86
- 4 Disorders of spatial perception and the visual control of action 87
 - 4.1 Space: egocentric and allocentric coding 88
 - 4.2 Disorders in the visual control of action: the Bálint-Holmes syndrome 92
 - Disorders of reaching: 'optic ataxia' or 'disorientation'? 92
 - 4.2.2 Visually guided eye movements 96
 - 4.2.3 Disorders of grasping 96
 - 4.2.4 Evidence from monkeys 102
 - 4.3 Disorders of spatial perception in humans 106
 - 4.3.1 Is 'visual-spatial agnosia' a myth? 106
 - 4.3.2 Higher level representations of space: a confluence of the dorsal and ventral streams? 110
 - 4.3.3 Is the right parietal lobe 'dominant' for space? 112
 - 4.4 'Visuospatial' deficits in the monkey 113
 - 4.4.1 The landmark task 113
 - 4.4.2 Route finding 117
 - 4.4.3 Behavioural deficits caused by posterior parietal lesions 118
 - 4.5 What is the visual function of the parietal lobe? 119

orders of visual recognition 121					
Types of agnosia 121					
Visual form agnosia 123					
5.2.1 Pathology 123					
5.2.2 The symptoms of visual form agnosia 125					
Patient D.F.: a case history of visual form agnosia 126					
5.3.1 Deficits in visual perception 126					
5.3.2 Preserved visuomotor abilities 128					
5.3.3 What visual pathways are damaged in D.F.? 134					
5.3.4 Limits on D.F.'s visual coding for action 137					
5.3.5 Tricks and strategies 143					
'Apperceptive agnosia' and the right hemisphere 145					
5.4.1 'Transformation agnosia' 145					
5.4.2 'Topographical agnosia' 147					
'Associative agnosia' and the left hemisphere 150					
Agnosia in monkeys? 151					
5.6.1 Recognition deficits 151					
5.6.2 Spared visuomotor abilities 154					
Summary 155					
sociations between perception and action					
normal subjects 157					
Introduction 157					
Different frames of reference for perception and action 157					
Movements to remembered places: a possible					
role for perception in the control of action? 165					
Illusory size distortions 168					
Grasping remembered objects 171					
6 Differences between perceptual					
and visuomotor memory 174					
Perceptual stability and postural adjustment 175					
Distance judgements and the calibration of locomotion 177					
Conclusions 178					
ention, consciousness, and the coordination of behaviour 183					
Streams within streams 181					
Attention 182					
7.2.1 Attention and consciousness 182					
7.2.2 Physiological studies of visual attention 186					
The 'neglect syndrome' 192					
7.3.1 Hemispatial neglect 192					
7.3.2 Visual extinction 198					

7.3.3	Directional	hypo	kinesia	199
-------	-------------	------	---------	-----

- 7.3.4 Is there a neglect 'syndrome'? 200
- 7.4 Consciousness and attention 202
- 7.5 The integrated action of perceptual and visuomotor systems 204
- 8 Epilogue: twelve years on 207
 - 8.1 New insights into the ventral and dorsal streams 208
 - The functional organization of the ventral stream 208 8.1.1
 - The functional organization of the dorsal stream 215 8.1.2
 - 8 1.3 Mirror neurones: an interaction between the two streams 219
 - 8.2 From consciousness to action 221
 - The roles of the dorsal and ventral 821 streams in visual awareness 221
 - 8.2.2 Knowledge and action 228
 - 8.2.3 The role of attention in integrating the two streams in adaptive behaviour 231
 - 8.3 Operating principles of the dorsal stream: new insights 235
 - Does the dorsal stream care about non-target objects? 235
 - 8.3.2 The dorsal stream as an 'automatic pilot' 237
 - 8.4 Spatial and temporal constraints on perception and visuomotor control 239
 - 8.4.1 Metrics and frames of reference 239
 - 8.4.2 Action and illusion 240
 - 8.4.3 Reaching into the past 245
 - 8.4.4 Learning new skills 248
 - 8.5 The Future 251

References 253 Index 295