TABLE OF CONTENTS

DEDICATION v

PREFACE vii

PART I LINEAR MODELS

RECENT DEVELOPMENTS IN DESIGNS AND ESTIMATORS FOR VARIANCE COMPONENTS 3

R.L. Anderson

1. Introduction 3
2. Use of Iterated Least Squares (ITLS) to Estimate Variance Components 3
3. Comparison of Designs and Estimators for Variance Components: Two-stage Nested Designs 6
4. Extensions to Multistage Nested Designs 7
5. Non-balanced Designs for Two-way Classification Models 11
6. Compositing 18
7. References 21

AN ANALYSIS OF THE MASSACHUSETTS NUMBERS GAME 23

Herman Chernoff

1. Introduction 23
2. The Payoff System 25
3. The Data 25
4. The Systems 27
5. A More Elaborate Model 33
6. Summary 36
7. Bibliography 37

STUDY OF OPTIMALITY CRITERIA IN DESIGN OF EXPERIMENTS 39

A. Hedayat

1. Preliminary 39
2. Some Well-known Optimality Criteria 42
3. S-optimality and (M,S)-optimality 44
4. Φα-criteria 45
5. Universal Optimality 47
6. Type 1 and Type 2 Criteria 51
7. Schur Optimality 52
8. References 54

EQUALITIES AND INEQUALITIES FOR CONDITIONAL AND PARTIAL CORRELATION COEFFICIENTS 57

Michael C. Lewis and George P.H. Styan

1. Introduction and Summary 57
2. Inequalities for ρ(UV|W) when ρ(UV:W) = ρ(UV·W) and both Regressions are Linear 58
3. Inequalities for ρ(UV·Z) when ρ(UV·Z) = ρ(UV:Z) and both Regressions are Linear in 1/Z 62
4. References 65
Table of Contents

Part II Parametric Inference and Goodness-of-Fit

Quantile Processes and Sums of Weighted Spacings for Composite Goodness-of-Fit

Miklós Csörgő and Pál Révész

1. Introduction and Legend 69
2. Discussion of a New Result 79
3. Nuisance Parameter Free Goodness-of-Fit Statistics for the Shift and Scale Family 82
4. On Weiss' Estimate of the Scale Parameter of the Shift and Scale Family 84
5. References 85

Asymptotic Distributions of Functions of the Eigenvalues of the Real and Complex Noncentral Wishart Matrices

C. Fang and P.R. Krishnaiah

1. Introduction 89
2. Perturbation Technique 89
3. Asymptotic Joint Distribution of Functions of the Roots of Noncentral Wishart Matrix 91
4. Applications in Investigation of the Structures of Interactions 96
5. Applications in Cluster Analysis 99
6. Asymptotic Distributions of Functions of the Roots of the Complex Wishart Matrix 104
7. References 107

On Efficient Inference in Symmetric Stable Laws and Processes

Andrey Feuerverger and Philip McDunnough

1. Introduction 109
2. Some Properties of Stable Distributions 110
3. Maximum Likelihood By Inversion 111
4. Maximum Likelihood Simulation Study 112
5. Fourier Methods for Inference 113
6. Fourier Gridpoints for the Symmetric Stable Laws 117
7. A Simulation Study for AR(1) Stable Processes 117
8. References 121

Some Comments on the Minimum Mean Square Error as a Criterion of Estimation

C. Radhakrishna Rao

1. Introduction 123
2. Estimation of a Single Parameter 124
3. Estimation of Variance 126
4. Direct and Inverse Regression 130
5. Simultaneous Estimation of Two Parameters 132
6. Estimation of Several Parameters 134
7. References 141
8. Appendix 143

Estimating Quantiles of Exponential Distribution

A.K.Md. Ehsanes Saleh

1. Introduction 145
2. Estimation of Quantiles of Exponential Distribution Based on k Arbitrary Order Statistics 145
3. Estimation of Quantiles Based on k Selected Order Statistics 147
4. ARE of \hat{Q}_k Relative to \tilde{Q} and \tilde{Q}_k 149
5. References 150
PART III BIOSTATISTICS

SOME ASPECTS OF THE ANALYSIS OF EVOKED RESPONSE EXPERIMENTS 155

David R. Brillinger

1. Introduction 155
2. Some Formalization 156
3. Investigation of the AER for Model 1 158
4. Uses of Model 1 159
5. A Formal (Linear) Approach 160
6. An Alternative Viewpoint 161
7. Superposability 161
8. Robust/Resistant Estimates 162
9. A Recursive Procedure 163
10. Resistance (Frequency Domain) 164
11. A Partially Parametric Model 165
12. A Fully Parametric Model 165
13. References 166

MEAN RESIDUAL LIFE 169

W.J. Hall and Jon A. Wellner

1. Introduction 169
2. Bounds for MRL 170
3. Characterizations of MRL; the Inversion Formula 170
4. Residual Moment Formulas and Some Characterizations 173
5. Applications of the Inversion Formula 177
6. MRL 'at Great Age' 179
7. Use of MRL in Modelling 181
8. References 182

THE PRODUCT FORM OF THE HAZARD RATE MODEL IN CARCINOGENIC TESTING 185

1. Introduction 185
2. The Dynamic, Compartment-Analytic Model 186
3. The "Multiple Attack" Model 192
4. References 194
5. Appendix 1 196
6. Appendix 2 197
7. Appendix 3 197

DOSE RESPONSE MODELS FOR QUANTAL RESPONSE TOXICITY DATA 201

Daniel Krewski and John Van Ryzin

1. Introduction 201
2. Dose-Response Models 202
3. Estimation Procedures 207
4. Empirical Results 211
5. Discussion 223
6. Appendix: Maximum Likelihood Estimation 224
7. References 229
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART IV NONPARAMETRIC METHODS AND ROBUST INFERENCE</td>
<td></td>
</tr>
<tr>
<td>THE CONDITIONAL APPROACH TO ROBUSTNESS</td>
<td>235</td>
</tr>
<tr>
<td>George A. Barnard</td>
<td></td>
</tr>
<tr>
<td>1. Conditional Approach</td>
<td>235</td>
</tr>
<tr>
<td>2. Appendix</td>
<td>240</td>
</tr>
<tr>
<td>3. References</td>
<td>241</td>
</tr>
<tr>
<td>THE STRONG CONVERGENCE OF EMPIRICAL NEAREST NEIGHBOR ESTIMATES OF INTEGRALS</td>
<td>243</td>
</tr>
<tr>
<td>Luc Devroye</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>243</td>
</tr>
<tr>
<td>2. Proofs</td>
<td>244</td>
</tr>
<tr>
<td>3. The Nearest Neighbor Rule</td>
<td>248</td>
</tr>
<tr>
<td>4. Refinements</td>
<td>250</td>
</tr>
<tr>
<td>5. References</td>
<td>252</td>
</tr>
<tr>
<td>ON ADAPTIVE ROBUST INFERENCE</td>
<td>253</td>
</tr>
<tr>
<td>Robert V. Hogg</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>253</td>
</tr>
<tr>
<td>2. Estimation of the Center</td>
<td>254</td>
</tr>
<tr>
<td>3. Distribution-free Methods</td>
<td>257</td>
</tr>
<tr>
<td>4. The Regression Situation</td>
<td>259</td>
</tr>
<tr>
<td>5. Conclusions</td>
<td>262</td>
</tr>
<tr>
<td>6. References</td>
<td>262</td>
</tr>
<tr>
<td>AN APPLICATION OF RANK INARIANT MULTIPLE REGRESSION AND VARIABLE SELECTION</td>
<td>265</td>
</tr>
<tr>
<td>D. L. McLeish</td>
<td></td>
</tr>
<tr>
<td>1. Examples</td>
<td>267</td>
</tr>
<tr>
<td>2. Numerical Procedures</td>
<td>269</td>
</tr>
<tr>
<td>3. Tests for Partial Correlation</td>
<td>270</td>
</tr>
<tr>
<td>4. Application to the Hail Data</td>
<td>271</td>
</tr>
<tr>
<td>5. Appendix</td>
<td>273</td>
</tr>
<tr>
<td>6. References</td>
<td>276</td>
</tr>
<tr>
<td>A NONPARAMETRIC TEST FOR EQUALITY AGAINST ORDERED ALTERNATIVES IN THE CASE OF SKEWED DATA, WITH A BIOMEDICAL APPLICATION</td>
<td>279</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>279</td>
</tr>
<tr>
<td>2. The Proposed Test</td>
<td>279</td>
</tr>
<tr>
<td>3. Asymptotic Relative Efficiency (ARE) of V-test</td>
<td>281</td>
</tr>
<tr>
<td>4. Application to Lung Cancer Data</td>
<td>282</td>
</tr>
<tr>
<td>5. References</td>
<td>283</td>
</tr>
<tr>
<td>RANK ANALYSIS OF COVARIANCE UNDER PROGRESSIVE CENSORING, II</td>
<td>285</td>
</tr>
<tr>
<td>Pranab Kumar Sen</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>285</td>
</tr>
<tr>
<td>2. Preliminary Notions</td>
<td>286</td>
</tr>
<tr>
<td>3. The Proposed PCS Tests</td>
<td>287</td>
</tr>
<tr>
<td>4. Asymptotic Properties of the Proposed Tests</td>
<td>289</td>
</tr>
<tr>
<td>5. Some General Remarks</td>
<td>294</td>
</tr>
<tr>
<td>6. References</td>
<td>295</td>
</tr>
</tbody>
</table>
Table of Contents

ROBUST TWO-SAMPLE TEST AND ROBUST REGRESSION AND ANALYSIS-OF-VARIANCE VIA MML ESTIMATORS
M.L. Tiku
1. Introduction 297
2. Joint Efficiency of μ_C and σ_C 298
3. Robust Two-Sample Test 301
4. Robust Regression Based on Grouped Data 304
5. Efficiency of θ^* 305
6. Robust Regression 307
7. Robust Analysis-of-Variance 308
8. Bibliography 312

PART V STOCHASTIC PROCESSES

GALERKIN APPROXIMATION OF NONLINEAR MARKOV PROCESSES
D.A. Dawson
1. Introduction 317
2. Background Information on Nonlinear Markov Systems 317
3. The Gauss-Galerkin Numerical Approximation 321
4. Gauss-Galerkin Approximation of Function Space Integrals 331
5. The Question of Convergence 334
6. References 338

DONSKER CLASSES OF FUNCTIONS
R.M. Dudley
1. Introduction and Preliminaries 341
2. Sequences of Functions 346
3. Metric Entropy with Bracketing 346
4. References 351

CAUSAL CALCULUS OF BROWNIAN FUNCTIONALS, AND ITS APPLICATIONS
Takeyuki Hida
1. Background 353
2. Generalized Brownian Functionals 354
3. Differential Calculus 356
4. Stochastic Partial Differential Equations 358
5. References 360

WHITE NOISE ANALYSIS AND AN APPLICATION TO STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACE
Yoshio Miyahara
0. Introduction 361
1. Stochastic Integrals and Multiple Wiener Integrals 362
2. Application to Stochastic Differential Equations 364
3. Concluding Remarks 373
4. References 373
Table of Contents

ON THE INCREMENTS OF STOCHASTIC PROCESSES AND THE RECONSTRUCTION OF THEIR DISTRIBUTIONS 375

Josef Steinebach

1. The Stochastic Geyser Problem 375
2. The Erdős-Rényi Law of Large Numbers 376
3. Some other Erdős-Rényi Type Laws 378
4. Convergence Rates in Erdős-Rényi Laws 382
5. References 384

TITLES OF CONTRIBUTED PAPERS 387