CONTENTS

Preface vii List of Participants ix

layers

I. Conditioning, dichotomy and related numerical considerations	
ROBERT D. RUSSELL A unified view of some recent developments in the numerical solution of BVODEs	1
FRANK DE HOOG and ROBERT M. MATTHEIJ The role of conditioning in shooting techniques	21
ROBERT M. MATTHEIJ and FRANK DE HOOG On non-invertible boundary value problems	55
PAUL VAN LOON Riccati transformations: When and how to use?	77
ROLAND ENGLAND and ROBERT M. MATTHEIJ Discretizations with dichotomic stability for two-point boundary value problems	91
II. Implementation aspects of various methods	
WAYNE ENRIGHT Improving the performance of numerical methods for two-point boundary value problems	07
FRED KROCH, J.P. KEENER and WAYNE ENRIGHT Reducing the number of variational equations in the implementation of multiple shooting	21
ANATOL SLEPTSOV The spline-collocation and the spline-Galerkin methods for Orr-Sommerfeld problem	37
III. Singular perturbation ('stiff') problems	
ROBERT E. O'MALLEY On the simultaneous use of asymptotic and numerical methods to solve nonlinear two-points problems with boundary and interior	

149

URI ASCHER Two families of symmetric difference schemes for singular perturbation problems	173
DAVID L. BROWN A numerical method for singular perturbation problems with turning points	193
MAXIMILIAN R. MAIER Numerical solution of singular perturbed boundary value problems using a collocation method with tension splines	207
IV. Bifurcation problems and delay differential equations	
GEORG BADER Solving boundary value problems for functional differential equations by collocation	227
ANDREAS GRIEWANK and GEORGE W. REDDIEN The approximation of simple singularities	245
RUEDIGER SEYDEL Calculating the loss of stability by transient methods, with application to parabolic partial differential equations	261
ALFREDO BELLEN A Runge-Kutta-Nystrom method for delay differential equations	271
V. <u>Special applications</u>	
PETER A. MARKOWICH A finite difference method for the basic stationary semiconductor device equations	285
MITCH D. SMOOKE, JAMES A. MILLER and ROBERT J. KEE Solution of premixed and counterflow diffusion flame problems by adaptive boundary value methods	303