Contents

Preface

Introduction: Letters illustrating clinical aspects of cancer • G. BARRY PIERCE 1
Colon cancer 2
Breast cancer 4
Acute leukemia 5
Lung cancer 6
Kidney cancer 7
Squamous cell cancer 8
Testicular cancer 9
Stomach cancer 10
Melanoma 11
Neuroblastoma 12
Summary 13

1 The pathology of cancer • G. BARRY PIERCE AND IVAN DAMJANOV 14
1.1 Introduction 14
1.2 Benign versus malignant tumors 18
1.3 The diagnosis of benign and malignant tumors 24
1.4 Tumor grading and staging 25
1.5 Classification and nomenclature 27
1.6 Metastasis 28
1.7 Tumor markers 30
1.8 How cancer kills 30
1.8a Organ failure 30
1.8b Obstruction of the gastrointestinal tract, ducts, and hollow organs 31
1.8c Cachexia and infection 33
1.9 Spontaneous regression 34
1.10 Dormancy 35
1.11 Initiation 36
1.12 Latency 36
1.13 Progression to the autonomous state 37
1.14 Selection and cellular heterogeneity 38
1.15 A developmental concept of cancer 40
1.16 Apoptosis 48
1.17 Summary 49

2 Invasion and metastasis • ROBERT G. MCKINNELL 51
2.1 Introduction 51
2.2 The metastatic cascade 54
 2.2a Disruption of the basement membrane and lytic activity in the extracellular matrix 56
 2.2b Cell detachment 59
 2.2c Cell migration and motility 61
 2.2d Invasion 64
 2.2e Penetration of the vascular system 65
 2.2f Cancer cells in the circulation 67
 2.2g Arrest of circulating cancer cells (stasis) 67
 2.2h Extravasation, growth of metastases, and metastasis of metastases 68
2.3 A multiplicity of genes are associated with metastasis 69
2.4 Soil and seed hypothesis of Paget
Box: Stephen Paget: No “ploughman” was he! 71
2.5 Is metastasis limited to malignant cells? 72
2.6 How do we know a metastasis to the liver is not a primary neoplasm of the liver? 76
2.7 Why study metastasis? 77
2.8 Summary 78
3 Carcinogenesis • ALAN O. PERANTONI

3.1 Introduction 80
3.2 What is a carcinogen? 81
3.3 Carcinogenesis as a multistage process 82
3.4 Chemical carcinogenesis 84
 3.4a Organic compounds 92
 3.4b Inorganic compounds and asbestos 95
 3.4c Naturally occurring chemicals 98
3.5 Radiation 98
 3.5a Ultraviolet radiation 98
 3.5b Ionizing radiation 100
 3.5c Endogenous ionizing radiation 103
3.6 Radon 103
3.7 Viral carcinogenesis 105
3.8 Endogenous carcinogenesis 107
3.9 Metabolism of xenobiotics 109
 3.9a Host defenses 109
 3.9b Inducibility of xenobiotic metabolism 111
 3.9c Metabolic activation of chemical carcinogens 113
 3.9d Inactivation of chemical carcinogens 114
 3.9e Systemic distribution of chemical carcinogens 114
 3.9f Mechanisms for carcinogen suppression/chemoprevention 115

Box: Elizabeth Cavert Miller with husband James 116
3.10 Modulation of carcinogenesis 117
3.11 Tumor promotion 120
3.12 Tumor progression 122
3.13 Alternative pathways for carcinogenesis? 123
3.14 Federal regulations 123
3.15 Summary 125

4 Genetics and heredity • ROBERT G. MCKINNELL

4.1 Introduction 126
4.2 Chromosomes and cancer 127
 4.2a Aneuploidy 127
4.2b Euploidy does not preclude genetic change 129
4.2c Cancers with chromosomal aberrations 131

4.3 Chromosome damage, mutation, and vulnerability to cancer 135

4.4 Hereditary cancers 136
 4.4a Retinoblastoma 136
 4.4b Wilms tumor 137
 4.4c Hereditary conditions that increase cancer risk 138

4.5 Familial cancer syndromes 139
 4.5a Colon cancer 139
 4.5b Breast cancer 141
 4.5c Prostate cancer 142
 4.5d Microarray technology as a way of examining many genes simultaneously 143

4.6 Summary 144

5 Cancer-associated genes • Alan O. Perantoni 145

5.1 Introduction 145
5.2 What is an oncogene? 145
5.3 Proto-oncogenes function in signal transduction, cell cycle regulation, differentiation, or programmed cell death (apoptosis) 148

5.4 Genetic approaches to delineate proto-oncogene function
 5.4a DNA microarray analysis – global gene expression or genomic profiling 154

5.5 Classification of proto-oncogenes/oncogenes
 5.5a Growth factors and their receptors 156
 5.5b Nonreceptor tyrosine kinases 161
 5.5c GTP-binding proteins: ras activation 162
 5.5d Cytoplasmic serine/threonine kinases 163
 5.5e Suppression of ras signaling 165
 5.5f Nuclear signaling 165
 5.5g Transcriptional activation 166

5.6 Regulation of DNA synthesis and the cell cycle 168
5.7 Other mechanisms for the regulation of signaling 171
5.8 Mechanisms of oncogene activation 173
5.9 Carcinogens and oncogene activation 178
5.10 Oncogene cooperation 179
5.11 Normal cells suppress tumor growth 180
5.12 Angiogenesis and tumor development 180
5.13 Tumor Suppressor genes 181
5.13a The Rb locus 183
5.13b p53 suppressor gene 184
5.13c Other tumor suppressors 187
5.13d Apoptosis and its role in growth regulation 188
5.13e Senescence 191
5.14 Where pathology meets molecular biology 192
5.15 Summary 193

6 Cancer in nonhuman organisms • ROBERT G. MCKINNELL 195
6.1 Introduction 196
6.2 Plant growths 197
6.3 Invertebrate animals 200
 Box: Yoshio Masui 202
6.4 Cancer in selected ectothermic (cold-blooded) vertebrates 203
 6.4a Fish 204
 6.4b Amphibia 207
 6.4c Reptiles 212
 Box: John C. Harshbarger 214
6.5 Cancer in selected warm-blooded vertebrates 215
 6.5a Birds 215
 6.5b Mammals 216
6.6 Summary – But try anyway! 220

7 Epidemiology • ROBERT G. MCKINNELL 221
7.1 Introduction 221
7.2 Cancer in fossil humans: A brief digression concerning paleopathology 226

7.3 Epidemiology of selected human cancers 226
 7.3a Lung cancer 227
 Box: Alton Ochsner 229
 Box: Richard Doll 231
 7.3b Breast cancer 233
 7.3c Skin cancer 236
 7.3d Prostate cancer 239
 7.3e Colorectal cancer 241
 7.3f Cervical cancer: “The Beginning of the End” 243
 7.3g Hodgkin lymphoma 244

7.4 Occupational cancers 244

7.5 AIDS-related Kaposi’s sarcoma 245

7.6 What is next? 246

8 Lifestyle: Is there anything more important? • ROBERT G. MCKINNELL 248

8.1 Introduction 248

8.2 Lung cancer is a preventable disease 249

8.3 Ultraviolet radiation and that “healthy tan” 251
 8.3a How to minimize risk for skin cancer 252
 8.3b The peculiar status of protection by sunscreens 253

8.4 Diet, nutrition, and cancer 253
 8.4a Dietary fiber and colorectal cancer 255
 Box: Denis Burkitt 256
 8.4b Correlations between food substances and cancer prevalence: Significance 258
 8.4c Dietary fat and obesity 258
 8.4d Vitamins and cancer 259
 8.4e Selenium and calcium 260
 8.4f Non-nutrient organic compounds in food that may protect against cancer 260
 8.4g American Cancer Society (2002) Guidelines on Diet, Nutrition, and Cancer Prevention 262

8.5 Exercise as it relates to cancer 263
8.6 A special note about breast cancer 263
8.7 Other lifestyle hazards 264
8.8 Summary 264

9 The stem cell basis of cancer treatment: concepts and clinical outcomes • RALPH E. PARCHMENT 266

9.1 Introduction 266
 9.1a Therapies remaining at the conceptual level 266
 9.1b Therapies being explored clinically: Differentiation therapy and cytostatic therapy 267
 Box: Leland Hartwell, R. Timothy Hunt, and Sir Paul Nurse
 9.1c Eradicating cancer cells – the aim of current cancer therapy 271

9.2 Absolute versus fractional cytoreduction 273
 Box: Howard Skipper 275

9.3 The meaning of “curing cancer” depends on whom you ask 279

9.4 The biological basis of multimodality therapy as optimal cancer treatment 282

9.5 Biological factors that contribute to treatment success 289
 Box: H. Rodney Withers 291

9.6 Biological factors that contribute to treatment failure 293

9.7 Treatment of intermediate-stage breast cancer as a clinical science success story 301

9.8 Summary 305

10 Oncology: The difficult task of eradicating caricatures of normal tissue renewal in the human patient • RALPH E. PARCHMENT 307

10.1 Surgical oncology 308
10.2 Radiation oncology 311
10.3 Chemotherapy 314
 10.3a Directly cytotoxic chemotherapy drugs 314
10.3b Reactive chemicals as cytotoxic anticancer drugs 315
10.3c Selective cytotoxicity as a screening tool to discover more cytotoxic drugs 315
10.3d Indirect tumor cytotoxicity by nutrient deprivation ("antimetabolite therapy") 317

Box: George H. Hitchings, Jr., and Gertrude B. Elion 318
Box: Charles Brenton Huggins 329

10.3e Trophic factor therapy to treat hematologic side effects of chemotherapy 341
10.3f Therapy that exploits differentiation processes in malignancies 342

10.4 Pharmacological issues arising from tumor biology 349
10.5 Unknowns, the future, and the emergence of molecular oncology 353

Appendix: Description of selected tumors • G. BARRY PIERCE AND IVAN DAMJANOV 355

A.1 Adenocarcinoma of the breast 355
A.2 Adenocarcinoma of the prostate 358
A.3 Adenocarcinoma of the colon 359
A.4 Squamous cell carcinoma 361
A.5 Teratocarcinomas 365
A.6 Liver cell carcinoma 370
A.7 Lung cancer 370
A.8 Malignant melanoma 372
A.9 Retinoblastoma 374
A.10 Neuroblastoma 374
A.11 Wilms tumor (nephroblastoma) 375
A.12 Sarcomas 377
A.13 Lymphoma and leukemia 378

Glossary 381

References 401

Index 469