Contents

Foreword V
Rolf Krebs

Preface VII

List of Contributors XVII

Part I Emerging In-Vitro Culture Technologies 1

1 Intelligent Biomatrices and Engineered Tissue Constructs:
In-Vitro Models for Drug Discovery and Toxicity Testing 3
Philip Lazarovic'i, Mengyan Li, Anat Perets, Mark J. Mondrinos,
Shimon Lecht, Christopher D. Koharski, Paul R. Bidez III,
Christine M. Finck, and Peter I. Lelkes

1.1 Introduction 3
1.2 Intelligent Biomaterials and Scaffolds for Tissue Engineering 4
1.2.1 Synthetic Materials 4
1.2.2 Natural Biomaterials 5
1.3 Fabrication of Scaffolds for Tissue Engineering 7
1.3.1 Electrospinning 7
1.3.2 Controlled Lyophilization 9
1.3.3 Acellularization 10
1.4 Progress and Achievements in Liver Tissue Engineering 11
1.4.1 The Liver 11
1.4.2 Scaffolds for Liver Tissue Engineering 12
1.4.3 Pharmaceutical Applications of Tissue-Engineered Liver Models 15
1.4.4 Conclusions and Novel Trends in Liver Tissue Engineering 16
1.5 Cardiac Tissue Engineering: Cells and Models 16
1.5.1 Cardiac Tissue Engineering 16
1.5.2 Cells used in Cardiac Tissue Engineering 17
1.5.3 Culture Models of Cardiac Tissue-Engineered Constructs 18

Drug Testing In Vitro: Breakthroughs and Trends in Cell Culture Technology
Edited by Uwe Marx and Volker Sandig
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31488-1
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.4 Specific Scaffolds Developed for Cardiac Tissue Engineering</td>
<td>20</td>
</tr>
<tr>
<td>1.6 In-Vitro-Engineered Pulmonary Tissue Models: Progress and Challenges</td>
<td>21</td>
</tr>
<tr>
<td>1.6.1 Lung Tissue Engineering: The Current State of Play</td>
<td>21</td>
</tr>
<tr>
<td>1.6.2 Existing In-Vitro Pulmonary Cell and Tissue Culture Biological Models</td>
<td>26</td>
</tr>
<tr>
<td>1.6.3 Potential of Alveolar Tissue Models as Disease Models in Pharmaceutical Sciences</td>
<td>27</td>
</tr>
<tr>
<td>1.6.4 The Future: Toward Engineered 3D Alveolar Tissue for Cell Therapy and Pharmacological Models</td>
<td>27</td>
</tr>
<tr>
<td>1.7 In-Vitro Models of the Blood–Brain Barrier (BBB)</td>
<td>28</td>
</tr>
<tr>
<td>1.7.1 The BBB, a Neurovascular Physiological Unit: The Concept</td>
<td>28</td>
</tr>
<tr>
<td>1.7.2 In-Vitro BBB Models: Cells and Devices</td>
<td>32</td>
</tr>
<tr>
<td>1.7.3 BBB In-Vitro Models: From First to Third Generation; the Biological Approach</td>
<td>35</td>
</tr>
<tr>
<td>1.7.4 Trends in Tissue Engineering: Realistic In-Vitro BBB Pharmacological Models</td>
<td>36</td>
</tr>
<tr>
<td>1.7.5 Conclusions for BBB In-Vitro Models</td>
<td>38</td>
</tr>
<tr>
<td>References</td>
<td>39</td>
</tr>
</tbody>
</table>

2 An Overview on Bioreactor Design, Prototyping and Process Control for Reproducible Three-Dimensional Tissue Culture 53
Ralf Pörtner and Christoph Giese

2.1 Introduction 53
2.2 Important Aspects for Bioreactor Design 55
2.3 Culture Systems and Bioreactors Used in Tissue Engineering 57
2.4 The Operation of Bioreactors 59
2.5 3D Systems Used for Drug Testing 62
2.6 Modeling of Bioreactor Systems for Tissue Engineering 62
2.7 The Artificial Immune System 65
2.7.1 Matrices 68
2.7.2 Microenvironment 68
2.7.3 Monitoring 68
2.8 Conclusions 69
References 70

3 An Overview on Bioelectronic and Biosensoric Microstructures
Supporting High-Content Screening in Cell Cultures 79
Andrea A. Robitzki and Andréé Rothermel

3.1 The Potential of Drug Development and Demand on High-Content Screening Systems 79
3.1.1 Post-Genomics or Proteomics: An Analysis of Manifold Systems and Functional Monitoring of Drugs 79
3.1.2 Pharmaceutical Research and High-Technology Platforms in the Biohybrid Technology Field 80
3.1.3 Synergy of Microchip Technology and Living Cells 81
3.2 Microfabrication Techniques to Generate Miniaturized Chip Components 82
3.3 Microelectrode-Based Techniques for Analyzing Cellular Parameters: Possible Use of Real-Time and HTS of Drugs Without Labeling 85
3.3.1 Impedance Spectroscopy: Screening the Cellular Parameters of Electrophysiologically Inactive Cells 85
3.3.2 Intracellular Recording of Electroactive Cells: Chip-Based, Automated Patch-Clamp Recording 91
3.3.3 Extracellular Recording of Electrically Excitable Cells: Multiple Site Recording of Field Potentials by MEAs 93
3.4 Concluding Remarks: Secondary Screening for Safety and Cost-Effective Drug Testing and Discovery 96
References 97

4 Novel In-Vitro Exposure Techniques for Toxicity Testing and Biomonitoring of Airborne Contaminants 103
Amanda Hayes, Shahnaz Bakand, and Chris Winder

4.1 Introduction 103
4.2 The Inhalation of Air Contaminants 103
4.3 Toxicological Assessment 105
4.4 In-Vitro Toxicological Studies 107
4.5 Applications of In-Vitro Test Methods 107
4.6 In-Vitro Toxicity Endpoints 108
4.7 In-Vitro Toxicity Testing of Air Contaminants 109
4.7.1 Indirect Methods 111
4.7.2 Direct Methods 112
4.8 Conclusions 115
References 116

Part II Primary Tissues and Cell Lines in Drug Screening/Testing 125

5 Drug Screening Using Cell Lines:
Cell Supply, High-Throughput and High-Content Assays 127
Christa Burger, Oliver Pöschke, and Mirek R. Jurzak

5.1 Introduction 127
5.2 Cell Lines for HTS 128
5.2.1 Selection of the Most Suitable Cell Line 128
5.2.2 Optimizing Cell Cultivation 130
5.2.2.1 Adherence 130
5.2.2.2 pH and Temperature 130
5.2.2.3 Media and Additives 131
5.2.2.4 Solvent Tolerance 131
5.2.2.5 Cell Density 131
5.2.3 Optimizing the Reproducibility of Seeding 132
5.2.3.1 Signal Shift 132
5.2.3.2 Edge Effect 132
5.2.4 Cell Production and Plate Delivery 132
5.2.4.1 The Amount of Cells Needed 132
5.2.4.2 Cell Storage 133
5.3 Conventional Cellular Screening Assays 134
5.3.1 General HTS Assay Prerequisites 134
5.3.2 Evaluation of Assay Quality 134
5.3.3 ELISA-Based Assays 135
5.3.4 Radiometric Cellular Assays 136
5.3.5 Reporter Gene Assays 137
5.3.6 Second Messenger Assays 138
5.3.7 Ion Channel Assays 138
5.4 The Definition of High-Content Screening 139
5.4.1 Instrumentation for HCS 139
5.4.2 Reagents (Fluorescent Probes) for HCS 140
5.4.2.1 Low-Molecular-Weight Fluorophores 140
5.4.2.2 Genetically Encoded Reporter for Fluorescence Detection 141
5.4.3 Assays and Target-Based Applications of HCS 142
5.4.3.1 GPCRs 142
5.4.3.2 Kinases 143
5.4.3.3 Other Drug Targets 144
5.4.4 HCS Applications Targeting Generic Cellular Parameters and Morphology 145
5.5 Outlook 146

References 147

6 Cell Lines and Primary Tissues for In-Vitro Evaluation of Vaccine Efficacy 153

Anthony Meager

6.1 Introduction 153
6.2 Measurement of Antigen Expression 155
6.3 Post-Vaccination Testing 158
6.3.1 Ex-Vivo Detection of Antigen-Specific T Cells 160
6.3.1.1 ELISPOT Assay 160
6.3.1.2 Cytokine Capture Assay and Intracellular Cytokine Staining 162
6.3.1.3 Measurement of T-Cell Cytotoxicity 163
6.3.2 Current Knowledge on T-Cell Responses in Vaccine Trials 165
6.4 Future Directions 167

References 168
7 Designer Cells Derived from Primary Tissue and Designed Cell Lines as a Sustainable Cell Source for Drug Discovery and Safety Assessment 177
Volker Sandig and Ingo Jordan

7.1 Introduction 177
7.2 Suitability and Limitations of Primary Cells as Physiologic Models 178
7.3 Tumor Cell Lines: Sometimes an Alternative 179
7.4 Immortalization by Design: Infinite Proliferation and a Differentiated Phenotype? 179
7.4.1 Telomerase: the Primary Target in Human Cells 179
7.4.2 Inactivation of Rb and p53 Pathways 181
7.4.3 Conditional Immortalization 183
7.5 Designed Cells in Complex Drug Tests 184
7.5.1 Cell Properties Required for Complex Screening Systems 184
7.5.2 Complex Designer Cells in Screens 185
7.5.3 Viruses and Host Cells in Drug Tests 189
7.5.4 Viruses and Designed Host Cells 190
7.5.5 Defined Viral and Cellular Pathways and Designed Host Cells 190
7.5.6 Virus Field Isolates and Designed Host Cells 192
7.5.7 Designed Viruses and Designed Host Cells 193
7.5.8 Designed Host Cells Combined 194
References 196

8 How Human Embryonic Stem Cell Research Can Impact In-Vitro Drug Screening Technologies of the Future 205
André Schrattenholz and Martina Klemm

8.1 Introduction 205
8.2 First Excursion: Protein Surrogate Biomarker Signatures 208
8.3 Second Excursion: Validation 211
8.4 Reproductive Toxicology and In-Vitro Tests 213
8.5 Reproductive Toxicology and hESC 214
8.6 Efficacy and Mode of Action Studies:
Systems Biology Using Embryonic Stem Cell-Based Screening Systems 218
8.7 Conclusions and Outlook 221
References 222
Part III The Use of Human Tissues in Drug Discovery:
Scientific, Ethical, Legal, and Regulatory Environments 229

9 Availability, Standardization and Safety of Human Cells and Tissues
for Drug Screening and Testing 231
Glyn N. Stacey and Thomas Hartung

9.1 Introduction 231
9.2 Availability of Human Cells and Tissues for In-Vitro Testing 231
9.2.1 Selecting a Cell-Based System 231
9.2.1.1 Considering the Options for Human Cell-Based Testing 231
9.2.1.2 Establishing a Method Based on an Existing Human Cell Line 232
9.2.1.3 Developing New or Improved Cell Line-Based Techniques 233
9.2.2 Using Donated Human Tissue 233
9.3 Standardization of Cells and Tissues for Testing Purposes 237
9.3.1 Standardization of Primary Cells and Tissues 237
9.3.2 Standardization of Cell Lines 238
9.3.2.1 Challenges for Standardization of Cell Lines 238
9.3.2.2 Achieving Standardization of Cell Lines 239
9.4 Safety Issues 242
9.4.1 Hazards Associated with Human Cells and Tissues 242
9.4.2 Risks from Cell Lines 243
9.5 The Validation of Cell- and Tissue-Based Assays 243
9.6 Conclusions and Future Prospects 245
References 246

10 Ethical Environment and Scientific Rationale Towards In-Vitro Alternatives
to Animal Testing: Where Are We Going? 251
Horst Spielmann

10.1 Introduction 251
10.2 Legal Framework in Europe for Developing Alternatives to
Experimental Animals 252
10.3 Cell and Tissue Culture Systems used in Pharmacology and
Toxicology 254
10.4 Drug-Metabolizing Systems 255
10.5 Reductions in Experimental Animal Numbers During the Past Decade
in Europe: The Situation in Germany 256
10.6 Reducing Animal Numbers in Regulatory Testing by International
Harmonization of Test Guidelines 257
10.7 Harmonization of OECD Guidelines for the Testing of
Chemicals 258
10.8 Principles of Scientific Validation: The Amden Validation
Workshops 258
10.9 Regulatory Acceptance of the Successfully Validated 3T3 NRU
In-Vitro Phototoxicity Test 260
10.10 Use of QSAR and Physico-Chemical Exclusion Rules to Predict Skin Irritation Potential  261
10.11 Alternative Methods Used in the Development and Safety Testing of Drugs, Biologicals, and Medical Devices  262
10.12 The Way Forward  264
References  265

Part IV Summary and Visions  269

11 How Drug Development of the 21st Century Could Benefit from Human Micro-Organoid In-Vitro Technologies  271
Uwe Marx

11.1 Introduction  271
11.2 One Hundred Years of In-Vitro Culture  272
11.3 A Unique Chance Has Been Created by Nature  275
11.4 How Do We Explore This Unique Chance?  275
11.5 A Roadmap to Enforce New Platform Technologies  276
11.5.1 The Design of Cell Culture Systems and Bioreactors  277
11.5.2 Process Development  277
11.5.3 Human Cell Supply  278
11.6 Outlook  280
References  282

Subject Index  283