Table of Contents

 0. Introduction 0.1. Theorems and constructions and ergodic theory 0.2. A little history 0.3. The story and purpose of these notes 0.4. Acknowledgements 	1 1 2 3 4
Part I. Approximation and Genericity in Ergodic Theory	5
1. Periodic processes	5
2. Genericity of approximation	10
 3. Various types of approximation 3.1. Cyclic approximation 3.2. Approximation of type (n, n + 1) 3.3. a-weak mixing and singularity of convolutions 	12 12 15 15
 4. Spectral multiplicity of ergodic transformations 4.1. Essential value of spectral multiplicity 4.2. Transformations with arbitrary maximal spectral multiplicity 4.3. Cartesian powers and multiplicities bounded from below 4.4. Some recent results 	18 19 19 22 26
5. Approximation and coding	27
6. Invariant measures for transformation with specification	37
7. Generic induced maps	42
 8. Combinatorial approximation by conjugation construction 8.1. Introduction 8.2. General framework 8.3. Ergodicity and rotation factors 8.4. Non-standard transformations 	44 44 45 48 50
Part II. Cocycles, Cohomology and Combinatorial Constructions	53
 Definitions and principal constructions 1. Cocycles, coboundaries and Mackey range Lipschitz cocycles, pseudo-isometries and the Ambrose-Kakutani theorem 	54 55 58

iv CONTENTS

	9.3. Cohomological equations for measure-preserving transformations and flows	59
10.	Structure of equivalence classes	62
	10.1. Majorization and density in L^1	62
	10.2. Continuous and almost differentiable representations	66
11.	Rigidity and stability	68
	11.1. Definitions	68
	11.2. Translations of the torus and smooth rigidity	70
	11.3. Stability of Hölder cocycles for transformations with specification	74
	11.4. Livshitz theory	78
	11.5. Invariant distributions and stability of partially hyperbolic systems	81
	11.6. Stability determined by invariant distributions in parabolic systems	85
12.	Wild cochains with tame coboundaries	89
	12.1. Continuous cocycles over measure-preserving homeomorphisms	90
	12.2. Fast approximation and C^{∞} cocycles	94
	12.3. Minimal nonergodic diffeomorphisms of \mathbb{T}^2	97
	12.4. Minimal nonergodic interval exchange transformations	98
13.	Non-trivial cocycles	102
	13.1. Two general criteria	102
	13.2. The case of fast C^{∞} approximation	105
	13.3. Weakly mixing flows on \mathbb{T}^2	107
	13.4. Ergodicity of analytic cylindrical cascades	112
	13.5. Weak mixing of special flows over interval exchange transforma-	
	tions	114
Re	ferences	11'