Table of Contents | 0. Introduction 0.1. Theorems and constructions and ergodic theory 0.2. A little history 0.3. The story and purpose of these notes 0.4. Acknowledgements | 1
1
2
3
4 | |--|----------------------------| | Part I. Approximation and Genericity in Ergodic Theory | 5 | | 1. Periodic processes | 5 | | 2. Genericity of approximation | 10 | | 3. Various types of approximation 3.1. Cyclic approximation 3.2. Approximation of type (n, n + 1) 3.3. a-weak mixing and singularity of convolutions | 12
12
15
15 | | 4. Spectral multiplicity of ergodic transformations 4.1. Essential value of spectral multiplicity 4.2. Transformations with arbitrary maximal spectral multiplicity 4.3. Cartesian powers and multiplicities bounded from below 4.4. Some recent results | 18
19
19
22
26 | | 5. Approximation and coding | 27 | | 6. Invariant measures for transformation with specification | 37 | | 7. Generic induced maps | 42 | | 8. Combinatorial approximation by conjugation construction 8.1. Introduction 8.2. General framework 8.3. Ergodicity and rotation factors 8.4. Non-standard transformations | 44
44
45
48
50 | | Part II. Cocycles, Cohomology and Combinatorial Constructions | 53 | | Definitions and principal constructions 1. Cocycles, coboundaries and Mackey range Lipschitz cocycles, pseudo-isometries and the Ambrose-Kakutani theorem | 54
55
58 | iv CONTENTS | | 9.3. Cohomological equations for measure-preserving transformations and flows | 59 | |-----|---|-----| | 10. | Structure of equivalence classes | 62 | | | 10.1. Majorization and density in L^1 | 62 | | | 10.2. Continuous and almost differentiable representations | 66 | | 11. | Rigidity and stability | 68 | | | 11.1. Definitions | 68 | | | 11.2. Translations of the torus and smooth rigidity | 70 | | | 11.3. Stability of Hölder cocycles for transformations with specification | 74 | | | 11.4. Livshitz theory | 78 | | | 11.5. Invariant distributions and stability of partially hyperbolic systems | 81 | | | 11.6. Stability determined by invariant distributions in parabolic systems | 85 | | 12. | Wild cochains with tame coboundaries | 89 | | | 12.1. Continuous cocycles over measure-preserving homeomorphisms | 90 | | | 12.2. Fast approximation and C^{∞} cocycles | 94 | | | 12.3. Minimal nonergodic diffeomorphisms of \mathbb{T}^2 | 97 | | | 12.4. Minimal nonergodic interval exchange transformations | 98 | | 13. | Non-trivial cocycles | 102 | | | 13.1. Two general criteria | 102 | | | 13.2. The case of fast C^{∞} approximation | 105 | | | 13.3. Weakly mixing flows on \mathbb{T}^2 | 107 | | | 13.4. Ergodicity of analytic cylindrical cascades | 112 | | | 13.5. Weak mixing of special flows over interval exchange transforma- | | | | tions | 114 | | Re | ferences | 11' |