Contents

PART	1 Linear and Nonlinear Processes	1
1	Introduction What we mean by 'system'	3 3
	Physicalism: the first attempt to describe social systems using the methods of natural systems	5
2	Modelling A brief introduction to modelling Direct problems and inverse problems in modelling	10 10 12
	The meaning and the value of models	14
3	The origins of system dynamics: mechanics The classical interpretation of mechanics The many-body problem and the limitations of classical mechanics	19 19 22
4	Linearity in models	27
5	One of the most basic natural systems: the pendulum The linear model (Model 1) The linear model of a pendulum in the presence of friction (Model 2) Autonomous systems	32 32 35 37
6	Linearity as a first, often insufficient approximation The linearization of problems The limitations of linear models	39 39 42
7	The nonlinearity of natural processes: the case of the pendulum The nonlinear pendulum (Model 3 without friction, and Model 3'	46
	with friction) Non-integrability, in general, of nonlinear equations	46 47
8	Dynamical systems and the phase space What we mean by dynamical system	49 49
	The phase space Oscillatory dynamics represented in the phase space	50 54

9	Jevons, Pareto and Fisher: from mathematical physics to	60
	mathematical economics	60
	Schumpeter and Samuelson: the economic cycle	62
	Dow and Elliott: periodicity in financial markets	64
10	The chaotic pendulum	67
	The need for models of nonlinear oscillations	67
	The case of a nonlinear forced pendulum with friction (Model 4)	68
11	Linear models in social processes: the case of two interacting populations	71
	Introduction	71
	The linear model of two interacting populations	72
	Some qualitative aspects of linear model dynamics	73
	The solutions of the linear model	76
	Complex conjugate roots of the characteristic equation: the	
	values of the two populations fluctuate	84
12	Nonlinear models in social processes: the model of	
	Volterra-Lotka and some of its variants in ecology	93
	Introduction	93
	The basic model	94
	A non-punctiform attractor: the limit cycle	98
	Carrying capacity	101
	Functional response and numerical response of the predator	103
13	Nonlinear models in social processes: the Volterra-Lotka	
	model applied to urban and regional science	108
	Introduction	108
	Model of joint population-income dynamics	108
	The population-income model applied to US cities and to Madrid	113
	The symmetrical competition model and the formation of niches	118
PAR	T 2 From Nonlinearity to Chaos	123
14	Introduction	125
15	Dynamical systems and chaos	127
	Some theoretical aspects	127
	Two examples: calculating linear and chaotic dynamics	131

		Contents
	The deterministic vision and real chaotic systems The question of the stability of the solar system	135 137
16	Strange and chaotic attractors Some preliminary concepts Two examples: Lorenz and Rössler attractors	141 141 146
	A two-dimensional chaotic map: the baker's map	150
17	Chaos in real systems and in mathematical models	154
18	Stability in dynamical systems The concept of stability A basic case: the stability of a linear dynamical system Poincaré and Lyapunov stability criteria	159 159 161 163
	Application of Lyapunov's criterion to Malthus' exponential law of growth Quantifying a system's instability: the Lyapunov exponents Exponential growth of the perturbations and the predictability horizon of a model	168 171 176
19	The problem of measuring chaos in real systems Chaotic dynamics and stochastic dynamics A method to obtain the dimension of attractors An observation on determinism in economics	179 179 183 186
20	Logistic growth as a population development model Introduction: modelling the growth of a population Growth in the presence of limited resources: Verhulst equation The logistic function	190 190 191 194
21	A nonlinear discrete model: the logistic map Introduction The iteration method and the fixed points of a function The dynamics of the logistic map	199 199 201 204
22	The logistic map: some results of numerical simulations	
	and an application The Feigenbaum tree An example of the application of the logistic map to	214 214
	spatial interaction models	224

231

23 Chaos in systems: the main concepts

PART 3 Complexity		237
24	Introduction	23
25	Inadequacy of reductionism	240
	Models as portrayals of reality	240
	Reductionism and linearity	24
	A reflection on the role of mathematics in models	243
	A reflection on mathematics as a tool for modelling	246
	The search for regularities in social science phenomena	249
26	Some aspects of the classical vision of science	253
	Determinism	253
	The principle of sufficient reason	25
	The classical vision in social sciences	259
	Characteristics of systems described by classical science	26
27	From determinism to complexity: self-organization, a new	
	understanding of system dynamics	260
	Introduction	266
	The new conceptions of complexity	268
	Self-organization	27
28	What is complexity?	27!
	Adaptive complex systems	275
	Basic aspects of complexity	277
	An observation on complexity in social systems	280
	Some attempts at defining a complex system	28
	The complexity of a system and the observer	28!
	The complexity of a system and the relations between its parts	286
29	Complexity and evolution	29
	Introduction	29
	The three ways in which complexity grows according	
	to Brian Arthur	29
	The Tierra evolutionistic model	295
	The appearance of life according to Kauffman	297
30	Complexity in economic processes	301
	Complex economic systems	30
	Synergetics	304
	Two examples of complex models in economics	30
	A model of the complex phenomenology of the financial markets	309

		Contents
31	Some thoughts on the meaning of 'doing mathematics'	315
	The problem of formalizing complexity	315
	Mathematics as a useful tool to highlight and express	
	recurrences	320
	A reflection on the efficacy of mathematics as a tool to	
	describe the world	323
32	Digression into the main interpretations of the foundations	
	of mathematics	329
	Introduction	329
	Platonism	330
	Formalism and 'les Bourbaki'	331
	Constructivism	336
	Experimental mathematics	340
	The paradigm of the cosmic computer in the vision of	
	experimental mathematics	341
	A comparison between Platonism, formalism, and constructivism	
	in mathematics	343
33	The need for a mathematics of (or for) complexity	348
	The problem of formulating mathematical laws for complexity	348
	The description of complexity linked to a better	
	understanding of the concept of mathematical infinity:	
	some reflections	351
Refere	nces	356
Subject index		375
•		3/3
Name index		380