# **Contents**

| 1 | Intr                   | roduction                                                    | 1  |  |
|---|------------------------|--------------------------------------------------------------|----|--|
|   | 1.1                    | The challenge of teaching introductory statistics            | 1  |  |
|   | 1.2                    | Fitting demonstrations, examples, and projects into a course | 1  |  |
|   | 1.3                    | What makes a good example?                                   | 3  |  |
|   | 1.4                    | Why is statistics important?                                 | 3  |  |
|   | 1.5                    | The best of the best                                         | 4  |  |
|   | 1.6                    | Our motivation for writing this book                         | 4  |  |
|   | PAI                    | RT I INTRODUCTORY PROBABILITY AND STATISTICS                 |    |  |
| 2 | Firs                   | st week of class                                             | 11 |  |
|   | 2.1                    | Guessing ages                                                | 11 |  |
|   | 2.2                    | Where are the cancers?                                       | 13 |  |
|   | 2.3                    | Estimating a big number                                      | 14 |  |
|   | 2.4                    | What's in the news?                                          | 15 |  |
|   | 2.5                    | Collecting data from students                                | 17 |  |
| 3 | Descriptive statistics |                                                              |    |  |
|   | 3.1                    | Displaying graphs on the blackboard                          | 19 |  |
|   | 3.2                    | Time series                                                  | 19 |  |
|   |                        | 3.2.1 World record times for the mile run                    | 20 |  |
|   | 3.3                    | Numerical variables, distributions, and histograms           | 20 |  |
|   |                        | 3.3.1 Categorical and continuous variables                   | 20 |  |
|   |                        | 3.3.2 Handedness                                             | 21 |  |
|   |                        | 3.3.3 Soft drink consumption                                 | 22 |  |
|   | 3.4                    | Numerical summaries                                          | 22 |  |
|   |                        | 3.4.1 Average soft drink consumption                         | 22 |  |
|   |                        | 3.4.2 The average student                                    | 24 |  |
|   | 3.5                    | Data in more than one dimension                              | 24 |  |
|   |                        | 3.5.1 Guessing exam scores                                   | 25 |  |
|   |                        | 3.5.2 Who opposed the Vietnam War?                           | 27 |  |
|   | 3.6                    | The normal distribution in one and two dimensions            | 28 |  |
|   |                        | 3.6.1 Heights of men and women                               | 29 |  |
|   |                        | 3.6.2 Heights of conscripts                                  | 30 |  |
|   |                        | 3.6.3 Scores on two exams                                    | 30 |  |
|   | 3.7                    | Linear transformations and linear combinations               | 31 |  |
|   |                        | 3.7.1 College admissions                                     | 31 |  |

## x CONTENTS

|   |                  | 3.7.2        | Social and economic indexes                     | 31       |  |
|---|------------------|--------------|-------------------------------------------------|----------|--|
|   |                  |              | Age adjustment                                  | 32       |  |
|   | 3.8              | Logai        | rithmic transformations                         | 32       |  |
|   |                  | 3.8.1        | Simple examples: amoebas, squares, and cubes    | 33       |  |
|   |                  | 3.8.2        | Log-linear transformation: world population     | 33       |  |
|   |                  | 3.8.3        | Log-log transformation: metabolic rates         | 35       |  |
| 4 | Lin              | ear re       | gression and correlation                        | 38       |  |
|   | 4.1              | Fittir       | ng linear regressions                           | 38       |  |
|   |                  | 4.1.1        | Simple examples of least squares                | 38       |  |
|   |                  | 4.1.2        | Tall people have higher incomes                 | 39       |  |
|   |                  | 4.1.3        | Logarithm of world population                   | 41       |  |
|   | 4.2              | Corre        | elation                                         | 43       |  |
|   |                  | 4.2.1        | Correlations of body measurements               | 43       |  |
|   |                  | 4.2.2        | Correlation and causation in observational data | 44       |  |
|   | 4.3              | Regre        | ession to the mean                              | 45       |  |
|   |                  | 4.3.1        | Mini-quizzes                                    | 45       |  |
|   |                  | 4.3.2        | Exam scores, heights, and the general principle | 46       |  |
| 5 | Data collection  |              |                                                 | 48       |  |
|   | 5.1              | Samp         | ole surveys                                     | 48       |  |
|   |                  | $5.1.1^{-}$  | Sampling from the telephone book                | 48       |  |
|   |                  | 5.1.2        | First digits and Benford's law                  | 52       |  |
|   |                  | 5.1.3        | Wacky surveys                                   | 54       |  |
|   |                  | 5.1.4        |                                                 | 55       |  |
|   |                  | 5.1.5        |                                                 | 56       |  |
|   |                  | 5.1.6        | How large is your family?                       | 56       |  |
|   | 5.2              |              | projects in survey sampling                     | 57       |  |
|   |                  | 5.2.1        |                                                 | 58       |  |
|   |                  | 5.2.2        | Topics for student surveys                      | 63       |  |
|   | 5.3              | <del>-</del> |                                                 |          |  |
|   |                  | 5.3.1        |                                                 | 66       |  |
|   |                  | 5.3.2        | · · · · · · · · · · · · · · · · · · ·           | 68       |  |
|   |                  | 5.3.3        | •                                               | 69       |  |
|   | 5.4              |              | rvational studies                               | 72       |  |
|   |                  |              | The Surgeon General's report on smoking         | 73       |  |
|   |                  |              | Large population studies                        | 73       |  |
|   |                  | 5.4.3        | <u> </u>                                        | 75       |  |
| 6 | Star             | tistica      | l literacy and the news media                   | 76       |  |
|   | 6.1 Introduction |              |                                                 | 76       |  |
|   | 6.2              |              | nment based on instructional packets            | 77       |  |
|   | 6.3              |              | nment where students find their own articles    | 79       |  |
|   | 6.4              | <u> </u>     |                                                 |          |  |
|   | 6.5              | ŭ Ü          |                                                 |          |  |
|   | 6.6              |              | aples of course packets                         | 84<br>84 |  |
|   | 0.0              |              |                                                 |          |  |

|   |        | 6.6.1                                                          | A controlled experiment: IV fluids for trauma victims  | 85  |
|---|--------|----------------------------------------------------------------|--------------------------------------------------------|-----|
|   |        | 6.6.2                                                          | A sample survey: 1 in 4 youths abused, survey finds    | 90  |
|   |        | 6.6.3                                                          | An observational study: Monster in the crib            | 93  |
|   |        | 6.6.4                                                          | A model-based analysis: Illegal aliens put uneven load | 98  |
| 7 | · ···· |                                                                |                                                        |     |
|   | 7.1    | Const                                                          | tructing probability examples                          | 103 |
|   | 7.2    | Rand                                                           | om numbers via dice or handouts                        | 103 |
|   |        | 7.2.1                                                          | Random digits via dice                                 | 103 |
|   |        | 7.2.2                                                          | Random digits via handouts                             | 103 |
|   |        |                                                                | Normal distribution                                    | 104 |
|   |        | 7.2.4                                                          | Poisson distribution                                   | 104 |
|   | 7.3    |                                                                | abilities of compound events                           | 104 |
|   |        | 7.3.1                                                          | Babies                                                 | 104 |
|   |        | 7.3.2                                                          | Real vs. fake coin flips                               | 105 |
|   |        |                                                                | Lotteries                                              | 107 |
|   | 7.4    |                                                                | ability modeling                                       | 108 |
|   |        | 7.4.1                                                          | 0                                                      | 108 |
|   |        |                                                                | Voting and coalitions                                  | 110 |
|   |        | 7.4.3                                                          | 1                                                      | 110 |
|   | 7.5    |                                                                | itional probability                                    | 111 |
|   |        | 7.5.1                                                          |                                                        | 111 |
|   |        | 7.5.2                                                          | Lie detectors and false positives                      | 113 |
|   | 7.6    |                                                                | an load a die but you can't bias a coin flip           | 114 |
|   |        | 7.6.1                                                          | Demonstration using plastic checkers and wooden dice   | 115 |
|   |        | 7.6.2                                                          | Sporting events and quantitative literacy              | 117 |
|   |        | 7.6.3                                                          | Physical explanation                                   | 118 |
| 8 |        |                                                                | inference                                              | 120 |
|   | 8.1    | 0 0                                                            |                                                        |     |
|   | 8.2    | 8.2 From probability to inference: distributions of totals and |                                                        |     |
|   |        | averag                                                         | 3                                                      | 121 |
|   |        | 8.2.1                                                          | Where are the missing girls?                           | 121 |
|   |        |                                                                | Real-time gambler's ruin                               | 122 |
|   | 8.3    |                                                                | dence intervals: examples                              | 123 |
|   |        | 8.3.1                                                          | Biases in age guessing                                 | 123 |
|   |        |                                                                | Comparing two groups                                   | 124 |
|   |        |                                                                | Land or water?                                         | 124 |
|   |        |                                                                | Poll differentials: a discrete distribution            | 125 |
|   |        |                                                                | Golf: can you putt like the pros?                      | 126 |
|   | 8.4    |                                                                | dence intervals: theory                                | 126 |
|   |        | 8.4.1                                                          | Coverage of confidence intervals                       | 126 |
|   |        | 8.4.2                                                          | Noncoverage of confidence intervals                    | 128 |
|   | 8.5    | Hypot                                                          | thesis testing: $z$ , $t$ , and $\chi^2$ tests         | 128 |
|   |        | 8.5.1                                                          | Hypothesis tests from examples of confidence intervals | 129 |
|   |        | 8.5.2                                                          | Binomial model: sampling from the phone book           | 130 |

#### хii **CONTENTS**

|    |      | 8.5.3 Hypergeometric model: taste testing          | 13           |
|----|------|----------------------------------------------------|--------------|
|    |      | 8.5.4 Benford's law of first digits                | 13           |
|    |      | 8.5.5 Length of baseball World Series              | 13           |
|    | 8.6  | Simple examples of applied inference               | 133          |
|    |      | 8.6.1 How good is your memory?                     | 132          |
|    |      | 8.6.2 How common is your name?                     | 133          |
|    | 8.7  | Advanced concepts of inference                     | $13^{\circ}$ |
|    |      | 8.7.1 Shooting baskets and statistical power       | 134          |
|    |      | 8.7.2 Do-it-yourself data dredging                 | $13^{2}$     |
|    |      | 8.7.3 Praying for your health                      | 13           |
| 9  | Mul  | tiple regression and nonlinear models              | 13'          |
|    | 9.1  | Regression of income on height and sex             | 13'          |
|    |      | 9.1.1 Inference for regression coefficients        | 13'          |
|    |      | 9.1.2 Multiple regression                          | 13'          |
|    |      | 9.1.3 Regression with interactions                 | 139          |
|    |      | 9.1.4 Transformations                              | 140          |
|    | 9.2  | Exam scores                                        | 14:          |
|    |      | 9.2.1 Studying the fairness of random exams        | 143          |
|    |      | 9.2.2 Measuring the reliability of exam questions  | 14           |
|    | 9.3  | A nonlinear model for golf putting                 | 142          |
|    |      | 9.3.1 Looking at data                              | 14:          |
|    |      | 9.3.2 Constructing a probability model             | 143          |
|    |      | 9.3.3 Checking the fit of the model to the data    | 144          |
|    | 9.4  | Pythagoras goes linear                             | 148          |
| 10 | Lyir | ng with statistics                                 | 14'          |
|    |      | Examples of misleading presentations of numbers    | 14'          |
|    |      | 10.1.1 Fabricated or meaningless numbers           | 14'          |
|    |      | 10.1.2 Misinformation                              | 14'          |
|    |      | 10.1.3 Ignoring the baseline                       | 149          |
|    |      | 10.1.4 Arbitrary comparisons or data dredging      | 149          |
|    |      | 10.1.5 Misleading comparisons                      | 15           |
|    | 10.2 | Selection bias                                     | 153          |
|    |      | 10.2.1 Distinguishing from other sorts of bias     | 153          |
|    |      | 10.2.2 Some examples presented as puzzles          | $15^{2}$     |
|    |      | 10.2.3 Avoiding over-skepticism                    | 15           |
|    | 10.3 | Reviewing the semester's material                  | 155          |
|    |      | 10.3.1 Classroom discussion                        | 155          |
|    |      | 10.3.2 Assignments: find the lie or create the lie | 150          |
|    | 10.4 | 1 in 2 marriages end in divorce?                   | 156          |
|    |      | Ethics and statistics                              | 158          |
|    |      | 10.5.1 Cutting corners in a medical study          | 158          |
|    |      | 10.5.2 Searching for statistical significance      | 159          |
|    |      | 10.5.3 Controversies about randomized experiments  | 159          |
|    |      | 10.5.4 How important is blindness?                 | 160          |

|    | 10.5.5 Use of information in statistical inferences          | 16  |
|----|--------------------------------------------------------------|-----|
|    | PART II PUTTING IT ALL TOGETHER                              |     |
| 11 | How to do it                                                 | 167 |
|    | 11.1 Getting started                                         | 167 |
|    | 11.1.1 Multitasking                                          | 167 |
|    | 11.1.2 Advance planning                                      | 167 |
|    | 11.1.3 Fitting an activity to your class                     | 168 |
|    | 11.1.4 Common mistakes                                       | 168 |
|    | 11.2 In-class activities                                     | 171 |
|    | 11.2.1 Setting up effective demonstrations                   | 171 |
|    | 11.2.2 Promoting discussion                                  | 172 |
|    | 11.2.3 Getting to know the students                          | 173 |
|    | 11.2.4 Fostering group work                                  | 173 |
|    | 11.3 Using exams to teach statistical concepts               | 175 |
|    | 11.4 Projects                                                | 175 |
|    | 11.4.1 Monitoring progress                                   | 177 |
|    | 11.4.2 Organizing independent projects                       | 178 |
|    | 11.4.3 Topics for projects                                   | 181 |
|    | 11.4.4 Statistical design and analysis                       | 183 |
|    | 11.5 Resources                                               | 185 |
|    | 11.5.1 What's in a spaghetti box? Cooking up activities from |     |
|    | scratch                                                      | 185 |
|    | 11.5.2 Books                                                 | 186 |
|    | 11.5.3 Periodicals                                           | 187 |
|    | 11.5.4 Web sites                                             | 187 |
|    | 11.5.5 People                                                | 188 |
| 12 | Structuring an introductory statistics course                | 189 |
|    | 12.1 Before the semester begins                              | 189 |
|    | 12.2 Finding time for student activities in class            | 190 |
|    | 12.3 A detailed schedule for a semester-long course          | 190 |
|    | 12.4 Outline for an alternative schedule of activities       | 198 |
|    | PART III MORE ADVANCED COURSES                               |     |
| 13 | Decision theory and Bayesian statistics                      | 203 |
|    | 13.1 Decision analysis                                       | 204 |
|    | 13.1.1 How many quarters are in the jar?                     | 204 |
|    | 13.1.2 Utility of money                                      | 20' |
|    | 13.1.3 Risk aversion                                         | 209 |
|    | 13.1.4 What is the value of a life?                          | 210 |
|    | 13.1.5 Probabilistic answers to true–false questions         | 21  |
|    | 13.1.6 Homework project: evaluating real-life forecasts      | 21: |
|    | 13.1.7 Real decision problems                                | 21: |

## xiv CONTENTS

|           | 13.2 | Bayesian statistics                                     | 215               |
|-----------|------|---------------------------------------------------------|-------------------|
|           |      | 13.2.1 Where are the cancers?                           | 215               |
|           |      | 13.2.2 Subjective probability intervals and calibration | 216               |
|           |      | 13.2.3 Drawing parameters out of a hat                  | 219               |
|           |      | 13.2.4 Where are the cancers? A simulation              | 219               |
|           |      | 13.2.5 Hierarchical modeling and shrinkage              | 220               |
| 14        |      | lent activities in survey sampling                      | 222               |
|           | 14.1 | First week of class                                     | 222               |
|           |      | 14.1.1 News clippings                                   | 222               |
|           |      | 14.1.2 Class survey                                     | 223               |
|           | 14.2 | Random number generation                                | 224               |
|           |      | 14.2.1 What do random numbers look like?                | 224               |
|           |      | 14.2.2 Random numbers from coin flips                   | 224               |
|           |      | Estimation and confidence intervals                     | 225               |
|           |      | A visit to Clusterville                                 | 226               |
|           |      | Statistical literacy and discussion topics              | 228               |
|           | 14.6 | Projects                                                | 230               |
|           |      | 14.6.1 Research papers on complex surveys               | $231 \\ 232$      |
|           |      | 14.6.2 Sampling and inference in StatCity               | 232               |
|           |      | 14.6.3 A special topic in sampling                      |                   |
| <b>15</b> | Pro  | blems and projects in probability                       | 237               |
|           |      | Setting up a probability course as a seminar            | 237               |
|           | 15.2 | Introductory problems                                   | 238               |
|           |      | 15.2.1 Probabilities of compound events                 | 239               |
|           |      | 15.2.2 Introducing the concept of expectation           | 240               |
|           |      | Challenging problems                                    | 241               |
|           |      | Does the Poisson distribution fit real data?            | 243               |
|           |      | Organizing student projects                             | 244               |
|           | 15.6 | Examples of structured projects                         | 244               |
|           |      | 15.6.1 Fluctuations in coin tossing—arcsine laws        | $\frac{245}{247}$ |
|           |      | 15.6.2 Recurrence and transience in Markov chains       | 249               |
|           | 15.7 | Examples of unstructured projects                       | 249               |
|           |      | 15.7.1 Martingales                                      | 248<br>250        |
|           |      | 15.7.2 Generating functions and branching processes     | 250               |
|           |      | 15.7.3 Limit distributions of Markov chains             | 250<br>251        |
|           |      | 15.7.4 Permutations                                     | $\frac{251}{252}$ |
|           |      | Research papers as projects                             | 202               |
| 16        |      | ected projects in a mathematical statistics course      | 254               |
|           |      | Organization of a case study                            | 255               |
|           | 16.2 | Fitting the cases into a course                         | 255               |
|           |      | 16.2.1 Covering the cases in lectures                   | 256               |
|           |      | 16.2.2 Group work in class                              | 256               |
|           |      | 16.2.3 Cases as reports                                 | 257               |

## CONTENTS XV

| 16.2.4 Independent projects in a seminar course           | 257 |
|-----------------------------------------------------------|-----|
| 16.3 A case study: quality control                        | 258 |
| 16.4 A directed project: helicopter design                | 259 |
| 16.4.1 General instructions                               | 259 |
| 16.4.2 Designing the study and fitting a response surface | 261 |
| Notes                                                     | 265 |
| References                                                | 277 |
| Author Index                                              | 288 |
| Subject Index                                             | 292 |