Contents

Preface

Contents

1. Introduction

	1.1	Directions for the use of the introduction	9
	1.2	A general characterization of mathematical logic	9
	1.3	Formalization, mathematization, interpretation	10
	1.4	The dialectic of the relation between mathematical and metamathematical aspects	12
	1.5	Metamathematico-mathematical parallelism and its natural limits	14
	1.6	Practical applications of methods of mathematical logic	16
	1.7	Principal mathematical tools of mathematical logic	17
	1.8	Constructivism in metamathematics	18
	1.9	Philosophy and mathematical logic	19
	1.10	Methodological tasks and achievements of mathematical logic within mathematics	20
	1.11	Semantics and pragmatics	22
	1.12	Mathematical logic and logic in the broad sense	23
2.	The	language of mathematics and its symbolization	
	2.1	Mathematical logic and mathematical language as a material system of signs	25
	2.2	The technique of symbolization of the language of mathematics	26
	2.3	The substance and purpose of symbolization of mathematical language	30
	2.4	Logical syntax and logical semantics	36
	2.5	The idealized symbolical mathematical theory (without individual constants) and its	
		generalizations	36
3.	Recu	ursive construction of the relation of consequence	
	3.1	Fundamental descriptively-syntactic rules	38
	3.2	Fundamental descriptively-semantic rules; definition of truth of a sentence	42
	3.3	Recursive construction of the relation of consequence	48
	3.4	Theorems on the relation of consequence; duality; the deduction theorem	5-
4.	Ехрі	ressive possibilities of the present symbolization	
	4.1	Symbolic expression of operations and functions	70
	4.2	Possibility of elementary symbolization of classical mathematics	7.

	4.3	Individual constants and their elimination	73	
		The syntactic approach to individual constants	78	
		Formalization of mathematical theories without primitive equality	80	
5.	Intui	tive and mathematical notions of an idealized axiomatic mathematical theory		
	5.1	Critical annotations; arithmetization and algebraization	83	
	5.2	Logical frame of a language and mathematical theory	87	
	5.3	The algorithmic condition for a finite sequence of signs to be an expression; unique-		
		ness of decomposition of expressions; the replacement theorem; scope of quantifica-		
		tion	92	
6.	The	algebraic theory of elementary predicate logic		
	6.1	The notion of Boolean algebra based on the order relation	101	
	6.2	The notion of Boolean algebra based on joins, meets and complementation	106	
	6.3	Basic algebraic tools of mathematical logic; Boolean subalgebras; homomorphisms;		
		ideals and prime ideals; set representation	112	
7.	Four	ndations of the algebraic theory of logical syntax		
	7.1	Free Boolean algebras, construction and representation	123	
	7.2	The algebraic aspect of propositional calculi	134	
	7.3	Algebraic properties of basic Lindenbaum algebras	140	
	7.3	Basic properties of joins and meets in Boolean algebras	143	
	7.5	Congruence of sentential expressions, renaming of bound individual indeterminates	146	
	7.6	Joins and meets in Lindenbaum algebras given by logical quantifiers; freedom of		
		basic Lindenbaum algebras	148	
	7.7	Indexed Boolean algebras	155 164	
	7.8	Homomorphisms and ideals in indexed Boolean algebras	172	
	7.9	Substitutive i-ideals and formalized theories	176	
	7.10	Abstract characterization of Lindenbaum algebras	170	
8.	Alge	ebraic laws of semantics of first-order predicate logic		
	8.1	The relation of satisfaction; truth-valuations; models of formalized theories	181	
	8.2	Algebraic characterization of basic semantical notions	186	
	8.3	Theorem on i-prime over-ideals for substitutively indexed algebras	189	
	8.4	Algebraic formulation of completeness of predicate logic	196	
Bibliography				
I	ndex		207	