Contents

Chapter 1. Sets, Relations, and Mappings	1
1. Introduction and notation	1
2. Some special sets	3
3. Combinations of sets	6
4. Set algebra	9
5. Product sets, relations, mappings	13
6. The subset relation	15
Chapter 2. Boolean Algebras	17
1. Definition	17
2. Duality and other basic properties	18
3. Boolean functions	21
4. Minimization of Boolean functions	25
5. Applications to switching networks	35
6. From sets to logic	39
Chapter 3. The Propositional Calculus	42
1. Basic notation and concepts	42
2. Well-formed formulas	47
3. Truth tables	50
4. Argumentation and evaluation	54
5. Logical equivalence and logical consequence	56
6. Normal forms	59
7. "Polish" notation and the tree of a formula	67
8. Minimal sets of connectives	74
9. An axiomatic approach to logic	75
Chapter 4. A View of Binary Vectors	82
1. Sets	82
2. Logic	83
3. Numbers	85
	ix

x CONTENTS

Chapter 5. Algorithms and Computing Machines

3. Markov algorithms

4. Turing machines

6 Digital computers

Chapter 7. Formal Languages

1. Post languages

Chapter 8. A Brief History

Answers to the Exercises

Index

1. Algorithms: Methods of solving problems

5. The Busy Beaver and halting problems

2. Recent advances in formal languages

2. Characteristics and descriptions of algorithms

7. Programming languages	121
Chapter 6. The First-Order Predicate Calculus	125
1. Definitions and basic properties	125
2. Free and bound variables; substitution	129
3. Validity and satisfiability	131
4. The determination of truth values	134
5. The prenex normal form	137
6. Axioms and theorems	140

88

88

92

99

106

112

111

144

144

148

152

157

191