INHALT

1.	Endliche Mengen und natürliche Zahlen	1
	1.1. Natürliche Zahlen	1
	1.2. Endliche Mengen	1
	1.3. Rechenregeln für natürliche Zahlen	3
	1.4. Was bedeutet "Existenz"?	5
	1.5. Abbildungen	7
	1.6. Mengen von Abbildungen	9
	1.7. Mengentheoretische Beschreibung der natürlichen Zahlen	10
	Hongonated endere besein cloudy der natur nehen Zamen	15
2.	Die Gesamtheit der natürlichen Zahlen	15
	2.1. Der Maßstab der natürlichen Zahlen	17
	2.2. Die Menge N der natürlichen Zahlen	17
	2.3. Die Peano-Axiome	22
	2.4. Endliche Mengen	24
	5	29
	2.5. Abzählbare Mengen	31
	2.6. Existenz von Mengen	33
	2.7. Die natürlichen Zahlen als "Prozeβ"	36
	2.8. Nonstandard-Modelle für die natürlichen Zahlen	37
3.	Ganze Zahlen und Restklassenringe	46
	3.1. Die Menge Z der ganzen Zahlen	46
	3.2. Ringe und Ideale	51
	3.3. Eindeutige Primfaktorzerlegung in Z	54
	3.4. Der Restklassenkörper ℤ p	57
	3.5. Der chinesische Restsatz	59
	3.6. Abelsche Gruppen	62

	3.7. Gleichungen über ℤ _p	65
	3.8. Der Körper O der rationalen Zahlen	67
	3.9. Der Nichtstandardfall	69
4.	Zifferndarstellungen natürlicher Zahlen	71
	4.1. Die Darstellung zur Basis g	71
	4.2. Der Hamming-Code	73
	4.3. Das Spiel Nim	75
	4.4. Magische Quadrate	76
	4.5. Binomialkoeffizienten	78
	4.6. Eine Verallgemeinerung auf Multimengen	80
	4.7. Fibonacci-Zahlen	82
	4.8. Entwicklungen der Gestalt Σa_{k} ·k!	86
	4.9. g-adische Zahlen	89
	4.10. Der Körper der p-adischen Zahlen	93
	4.11. Die g-adische Darstellung der rationalen Zahlen	99
5.	Reelle und komplexe Zahlen	103
	5.1. Reelle Zahlen	103
	5.2. Angeordnete Körper	108
	5.3. Mengen reeller Zahlen	112
	5.4. Der Nichtstandardfall	117
	5.5. Grundbegriffe der Analysis im Nichtstandardfall	119
	5.6. Komplexe Zahlen	123
	5.7. Der Fundamentalsatz der Algebra	125
	5.8. Kann man Vektoren im \mathbb{R}^{n} multiplizieren?	126
6.	Unendliche Mengen	128
	6.1. Allgemeines über den Mengenbegriff	128
	6.2. Das Kontinuumproblem	130
	6.3. Das Auswahlaxiom und der Hausdorff'sche Maximalitätssatz	132
	6.4. Der Wohlordnungssatz	137
	6.5. Ultrafilter	140
	6.6. Nichtstandardmodelle	142
7.	Konstruktionen mit Zirkel und Lineal	149
	7.1. Eine Charakterisierung der konstruierbaren Punkte	149
	7.2. Einige konkrete Probleme	153

7.3. Der Polynomring K[x]	157
7.4. Konstruierbarkeit des regelmäßigen n-Ecks	163
7.5. Die Cardano'sche Formel	168
8. Summen von Quadraten	174
8.1. Pythagoräische Tripel	174
8.2. Summen von Quadraten	177
8.3. Der Ring ℤ[i] der Gauß'schen ganzen Zahlen	181
8.4. Ganze Zahlen in quadratischen Zahlkörpern	193
8.5. Summen von 4 Quadraten	199
8.6. Quaternionen	202
9. Potenzreihen	210
9.1. Der Differenzenoperator	210
9.2. Der binomische Lehrsatz und formale Potenzreihen	215
9.3. Die Exponentialfunktion	222
9.4. Trigonometrische Funktionen und komplexe Zahlen	225
9.5. Der q-binomische Lehrsatz	230
9.6. Die Tripelproduktidentität von Jacobi	234
10. Die Zahl π	242
10.1. Verschiedene Darstellungen von π	242
10.2. Die Gammafunktion	246
10.3. Die Euler'sche Summenformel	253
10.4. Schlußbemerkungen	256
Litonotum	263

Literatur