TABLE OF CONTENTS

0 INTRODUCTION

I THE KEPLER PROBLEM

(I.1) Formulation
(I.2) Collision manifold
(I.3) Infinity manifolds
(I.4) Summary on the singularities
(I.5) Heteroclinic orbits
(I.6) Global flow
(I.7) Poincaré map

II THE ANISOTROPIC KEPLER PROBLEM

(II.1) Formulation
(II.2) Symmetries
(II.3) The Collision manifold
(II.4) The Infinity manifolds
(II.5) Invariant manifolds I_h
(II.6) Heteroclinic orbits
(II.7) The flow on the collision manifold

III THE FLOW FOR NON-NEGATIVE ENERGY LEVELS

(III.1) The case $h=0$
(III.2) The case $h>0$

IV THE FLOW ON NEGATIVE ENERGY LEVELS WHEN $\mu>9/8$

(IV.1) The intersection of the invariant manifolds with the surface of section $v=0$
(IV.2) The Poincaré maps g,f and h on $v=0$
(IV.3) The invariant manifolds under g and f
(IV.4) Geometrical interpretation of the neighbourhoods of the invariant manifolds
TABLE OF CONTENTS

(IV.5) Regions with a constant number of crossings with the q_2-axis, the map $S_{(\theta_0,\mu)}$ 65
(IV.6) Basic sets for dynamical description 69
(IV.7) A subshift as subsystem of h 83
(IV.8) Gutzwiller's Theorem 91

(V) THE FLOW ON NEGATIVE ENERGY LEVELS WHEN $1<\mu<9/8$

(V.1) The intersection of the invariant manifolds with the surface of section $v=0$ 93
(V.2) Dynamical description 99

(VI) SYMMETRIC PERIODIC ORBITS

(VI.1) Definitions and preliminary results 100
(VI.2) The case $\mu=1$ 103
(VI.3) The case $\mu>9/8$ 104

APPENDIX 112
REFERENCES 113