Contents

xix 1 1 1 1 1 13
1 4 13
13 4
13
22
22
22
26
31
40
43
47
56
79
81
81
90
105
118
124
125
125
138
144
151

viii Contents

	4.5	Cesàro means	156
	4.6	De la Vallée Poussin means	160
	4.7	Integral representations	167
	4.8	Generalised convolution operators	168
5	Circul	ar regions and Grace's theorem	172
	5.1	Convolutions and duality	172
	5.2	Circular regions	178
	5.3	The polar derivative	184
	5.4	Locating critical points	186
	5.5	Critical points of rational functions	190
	5.6	The Borwein-Erdélyi inequality	193
	5.7	Univalence properties of polynomials	196
	5.8	Linear operators	203
6	The II	ieff–Sendov conjecture	206
	6.1	Introduction	206
	6.2	Proof of the conjecture for those zeros on the unit circle	207
	6.3	The direct application of Grace's theorem	208
	6.4	A global upper bound	213
	6.5	Inequalities relating the nearest critical point to the	
		nearest second zero	216
	6.6	The extremal distance	221
	6.7	Further remarks on the conjecture	223
7	Self-ir	versive polynomials	228
	7.1	Introduction	228
	7.2	Polynomials with interspersed zeros on the unit circle	232
	7.3	Relations with the maximum modulus	238
	7.4	Univalent polynomials	241
	7.5	A second necessary and sufficient condition for angular	
		separation of zeros	249
	7.6	Suffridge's extremal polynomials	251
8	Dualit	y and an extension of Grace's theorem to rational	
	func	etions	263
	8.1	Linear operators and rational functions	263
	8.2	Interpretations of the convolution conditions	270
	8.3	The duality theorem for $T(1, \beta)$	275
	8.4	The duality theorem for $T(m, \beta)$	282
	8.5	The duality principle	286
	8.6	Duality and the class $T(\alpha, \beta)$	289
	8.7	Properties of the Kaplan classes	293
	8.8	The class $S(\alpha, \beta)$	296

Contents	ix

	8.9	The classes $T_0(\alpha, \beta)$	300
	8.10	The class $T(2, 2)$	302
9	Real p	polynomials	304
	9.1	Real polynomials	304
	9.2	Descartes' rule of signs	317
	9.3	Strongly real rational functions	319
	9.4	Critical points of real rational functions	323
	9.5	Rational functions with real critical points	325
	9.6	Real entire and meromorphic functions	326
10	Level	curves	350
	10.1	Level regions for polynomials	350
	10.2	Level regions of rational functions	353
	10.3	Partial fraction decomposition	355
	10.4	Smale's conjecture	358
11	Miscellaneous topics		370
	11.1	The abc theorem	370
	11.2	Cohn's reduction method	372
	11.3	Blaschke products	373
	11.4	Blaschke products and harmonic mappings	377
	11.5	Blaschke products and convex curves	382
	11.6	Blaschke products and convex polygons	392
	11.7	The mapping problem for Jordan polygons	402
	11.8	Sudbery's theorem on zeros of successive derivatives	407
	11.9	Extensions of Sudbery's theorem	413
	Referen	eces	416
	Index		421