TABLE OF CONTENTS

Introductio	on xi	
Chapter I.	The theory of multiplicative lattices 1	
§1.	Multiplicative lattices in n-dimensional complex space	
§2.	The existence of an infinite number of different irreducible	
	maximal lattices for any given dimension $n > 1$ and any sig-	
	nature 7	
§3.	The geometry of Galois theory19	
§4.	Multiplicative automorphisms (units) of lattices in K_n	
§5.	Ideals of a maximal lattice, the group of their classes, unique-	
	ness of decomposition	
§6.	A basic figure consisting of the principal lattice O and $h-1$	
	auxiliary lattices	ı
§ 7.	Quadratic forms of a lattice in K_n	
§8.	Factorable forms of a lattice in K_n	1
§9.	Inverse lattices and factorable inverse forms	ı
Supple	ement. Some useful lemmas on lattices in real euclidean space 73	,
Chapter II.	. Some calculations with numbers in cubic fields	
§10.	Cubic fields, Tschirnhausen transformations, integers in the	
	field	!
§11.	The operations of addition, subtraction, multiplication, divi-	
	sion, raising to powers and taking roots of numbers in a cubic	
	field, and the calculation of norms and discriminants 86	,
§12.	A linear fractional representation of numbers in a cubic field 93	
§13.	The solution of the problem inverse to the Tschirnhausen	
	problem for a pair of cubic equations	,
§14.	A basis for integers in a field	7
§15.	The connection between rings of integers in cubic fields con-	
	taining I and classes of irreducible binary cubic forms with ra-	
	tional integer coefficients	Ĺ

§16.	The solution of the problem of equivalence for two irreducible	
	binary cubic forms with integer coefficients	107
§17.	Calculation of a basis for a cubic field according to Voronoi	
§18.	The decomposition of rational primes into prime ideals in a	
	cubic field	113
§19.	The decomposition of rational primes into prime ideals in any	
	maximal three-dimensional lattice	122
§20.	A theorem on the discriminant of a field	123
§21.	Further theorems on the decomposition of rational primes into	
	prime ideals in a cubic field	125
§22.	The determination of the group of classes of ideals in a cubic	
	field	
§23.	Various forms connected with cubic fields	
§24.	The cyclic cubic field	
§25.	Purely cubic fields	130
Chapter II	I. Geometry, tabulation and classification of algebraic fields	
•	of the third and fourth degree	147
Part A		
§26 .		
§27.	The elimination of the reducible points in both cases	
§28.	Limits on the coefficients q and n for a given s for points	
v	close to the origin in rings of cubic integers, containing 1	
	whose discriminant does not exceed L in absolute value	153
§29 .	The determination of the third number in the basis of each of	
	the captured points	150
§30 .	The plan of action for the discovery of all irreducible rings,	
	composed of cubic integer points and containing the point 1,	
	whose discriminants do not exceed a given number in absolute	
	value	15
§31.	An independent tabulation of cubic cyclic maximal lattices	
Part E		
§32 .	Geometry of a binary cubic form and its covariants	
§33.	Reduction theory for binary cubic forms	17
§34.	Binary cubic forms considered as norms	17
§35.	Estimating the minima of binary cubic forms	

	TABLE OF CONTENTS	vii
§36 .	A theorem of Tartakovskii	181
Part C	. Tabulation of fields of the fourth degree	184
§ 3 7.	The lattice \overline{W} and its nets \overline{W}_0 , \overline{W}_1 , \overline{W}_2 for $n=4$, $\tau=0$	184
§38 .	The exclusion of reducible points	187
§ 3 9.	Limiting the coefficients p, q, n	
$\S40.$	The parallel projection of a quadratic subfield; limiting the	
	coefficients α_1 and α_2	191
§41.	The plan of action for obtaining all purely real quartic fields	
	whose discriminants are less than L	197
Part D	. The construction of cubic regions on quadratic regions	202
§42.	Basing cubic regions on quadratic regions	202
§43.	Some theorems on projections of cubic numbers	204
§44.	Characteristics of a projection of a maximal cubic lattice	
§45.	The construction of maximal cubic lattices	
\$ 46.	Some properties of the discriminants of cubic fields	217
Part E	. The construction of a quartic region on a cubic region	220
§ 4 7.	Basing a quartic region on a cubic region	220
$\S48.$	Some theorems about projections of fourth order numbers	222
§ 49.	The solution of the problem inverse to the problem of	
	Tschirnhausen for two quartic equations	
§50.	Properties of the projection of a maximal quartic lattice	226
§51.	The construction of maximal quartic lattices on lattices L	228
§52.	The structure of a quartic region and of the cubic region upon	
	which it is based as determined by the Galois group	233
§53.	Another method of construction of quartic regions with the	
	groups ${\mathfrak G}$, ${\mathfrak T}$ and ${\mathfrak T}$	
Chapter IV	The algorithm of Voronoĭ	246
Part A	. The case $D>0$	246
§54.	Chains of relative minima	246
§55 .	A theorem on parallel chains	250
§56 .	Theorems on chains of different directions	
§57 .	The solution of the problem of similarity of two lattices that	
	are rationally associated with an irreducible maximal multi-	
	plicative lattice in $R_{3,0}$, or of lattices that are similar to such	
	lattices	256

§ 58 .		
	a lattice rationally associated with an irreducible multiplica-	
•	tive lattice in $R_{3,0}$, or for a lattice similar to such a lattice	259
§ 59.	An algorithm for the determination of the relative minimum ad-	
	jacent to a given one for a lattice that is rationally associated	
	with an irreducible lattice in $R_{3,0}$, or for one that is similar to	
	such a lattice	262
Part E	3. The case $D < 0$	273
§60.	A theorem of Voronoï on neighboring relative minima	273
§61 .	The algorithm of Voronoi in the case $n = 3$, $\tau = 1$ for the cal-	
	culation of a chain of relative minima in the direction of in-	
	creasing $ ho$, when the lattice is rationally connected with an	
	irreducible multiplicative lattice in $R_{3,1}$ or is similar to such	
	a lattice	282
§62 .	The solution of the problem of similarity of lattices rationally	
	connected with the same irreducible cubic multiplicative lat-	
	tice (i.e., with the same cubic field), or of lattices similar to	
	such lattices	287
§63.	The calculation of a basic multiplicative automorphism of a	
	lattice rational with respect to an irreducible multiplicative	
•	lattice, or similar to such a lattice, when $n = 3$ and $\tau = 1$	287
§6 4 .	An algorithm for $D < 0$, based on the parallel transformation of	
	a factorable form of a lattice and of a form polar to it	290
Chapter V.	. Thue's theorem	305
§65 .	The hyperbolas of Liouville and Thue	306
§66.	Boundary sequences and the B-hyperbola	
§67 .	Two lemmas of Thue	
§68.	The derivation of the existence of the B-hyperbola from the	
	lemmas	315
§69.	Investigations of V. A. Tartakovskii of the problem of finding	
	bounds for the solutions by means of Thue's method	316
§70 .	An improvement on Siegel's theorem on the number of solutions	
	of $ f(x, y) \le k$, where $f(x, y)$ is a binary cubic form of positive	
	discriminant	23
Chapter VI	I. On indeterminate equations of the third degree in two un-	
	knowns	343

Part A	. Integer solutions	343
§71 .	The solution of the indeterminate equation $aX^3 + Y^3 = 1$	344
§72.	The generalization of the method of §71 to the equation	
Ü	I(X, Y) = 27	351
§73 .	Further generalizations of the methods of §71	
§7 4.	The generalization of the method of §71 to the equation	
Ů	$x^4 - Ay^4 = \pm 1 \dots$	370
§75 .	On the number of solutions of the indeterminate equation AX^3 +	
	$BX^2Y + CXY^2 + EY^3 = \sigma$, where the form (A, B, C, E) is irre-	
	ducible and is of negative discriminant	380
§76 .	Further investigations on the algorithm of ascent	
§77.	On integer cubic equations with a given discriminant	
§7 8.	The equation $U^3 - V^2 = k$	
Part B		
I alt D	knowns in rationals	419
§79 .	On rational points on cubic curves	
\$19. \$ 80.	Birational transformations	423
\$80. \$81.	Proof of Mordell's theorem given by Weil	427
	On the equation $x^3 + y^3 = Az^3$	435
Appendix	On the equation $x^2 + y^2 = A2$	449
Supplemen	t I. Introduction to Dirichlet's Lectures on the theory of num-	452
	bers: The geometry of binary quadratic forms	4))
§1.	Definitions and some general theorems about lattices	453
§2.	Further theorems on lattices in a plane	459
§3.	Theory of the distribution of the points of a lattice with respect	
	to given asymptotes	465
§4.	The theory of positive binary quadratic forms	476
§5.	The theory of indefinite binary quadratic forms	480
Supplemen	t II. Investigations in the geometry of Galois theory	491
§1.	The theory of R-algebras	491
§2.	The Galois group of an R-algebra	495
§3.	Basic theorems of Galois for R-algebras	499
§4.	The connection with the present-day presentation of Galois	
•	theory	500
Bibliograp		504