Contents

PREFACE		Vli
CHAPTER 1.	PRELIMINARIES	1
	1. Notation and terminology	1
	Projective, injective and flat modules	11
	 Artinian and Noetherian modules 	19
	4. Group actions	25
	 Cohomology groups and group extensions 	28
	Some properties of cohomology groups	41
	7. Matrix rings and related results	46
CHAPTER 2.	GROUP-GRADED ALGEBRAS AND CROSSED PRODUCTS: GENERAL THEORY	59
	 Definitions and elementary properties 	59
	Equivalent crossed products	71
	Some ring-theoretic results	78
	 The centre of crossed products over simple rings 	92
	 Projective crossed representations 	103
	6. Graded and G -invariant ideals	119
	7. Induced modules	125
	8. Montgomery's theorem	147
CHAPTER 3.	THE CLASSICAL THEORY OF CROSSED PRODUCTS	151
	 Central simple algebras 	151
	2. The Brauer group	161
	3. Classical crossed products and the Brauer group	169
CHAPTER4.	CLIFFORD THEORY FOR GRADED ALGEBRAS	181
	1. Graded modules	181
	2. Restriction to A,	186
	3. Graded homomorphism modules	191
	4. Extension from A_1	196
	5. Induction from A_1	205
CHAPTER 5.	PRIMITIVE AND PRIME IDEALS OF CROSSED PRODUCTS	223
	1. Primitive, prime and semiprime ideals	223
	2. Primitive ideals in crossed products	225
	3. Prime coefficient rings	230
	4. Incomparability and Going Down	246
	5. A Going Up Theorem	259
	6. Chains of prime and primitive ideals	267
	· ·	

x Contents

CHAPTER 6.	SEMIPRIME AND PRIME CROSSED PRODUCTS	
	 Coset calculus Δ-methods 	277 285
	 The main theorem and its applications Sufficient conditions for semiprimeness Twisted group algebras 	294 305 311
BIBILIOGRAPHY		331
NOTATION		339
INDEX		345