Contents | Symbols | xxiii | |--|-------| | Preface | xxv | | Acknowledgements | xxxi | | Part I. An Array of Twentieth Century Associative Algebra | | | Chapter 1. Direct Product and Sums of Rings and Modules and the Struc- | | | ture of Fields | 1 | | §1.1 General Concepts | 1 | | §1.2 Internal Direct Sums | 3 | | §1.3 Products of Rings and Central Idempotents | | | §1.4 Direct Summands and Independent Submodules | 3 | | §1.5 Dual Modules and Torsionless Modules | 3 | | §1.6 Torsion Abelian Groups | 4 | | §1.7 Primary Groups | 4 | | §1.8 Bounded Order | 4 | | §1.9 Theorems of Zippin and Frobenius-Stickelberger | 4 | | §1.10 Divisible Groups | 5 | | §1.11 Splitting Theorem for Divisible Groups | 5 | | §1.12 Second Splitting Theorem | 5 | | §1.13 Decomposition Theorem for Division Groups | 5 | | §1.14 Torsion Group Splits Off Theorem | 5 | | §1.15 Fundamental Theorem of Abelian Groups | 5 | | §1.15 Kulikoff's Subgroup Theorem | 5 | | §1.16 Corner's Theorem and the Dugas-Göbel Theorem | 6 | | §1.17 Direct Products as Summands of Direct Sums | 6 | | §1.18 Baer's Theorem | 6 | | §1.19 Specker-Nöbeling-Balcerzyk Theorems | 6 | | §1.20 Dubois' Theorem | 7 | | §1.21 Balcerzyk, Bialynicki, Birula and Loś Theorem, Nunke's Theorem, | , | | and O'Neill's Theorem | 7 | | §1.22 Direct Sums as Summands of Their Direct Product | 8 | | §1.23 Camillo's Theorem | 8 | | §1.24 Lenzing's Theorem | 8 | | §1.25 Zimmermann's Theorem on Pure Injective Modules | 8 | | §1.26 Szele-Fuchs-Ayoub-Huynh Theorems | 8 | |--|----| | §1.27 Kertész-Huynh-Tominaga Torsion Splitting Theorems | 9 | | §1.28 Three Theorems of Steinitz on the Structure of Fields | 9 | | §1.29 Lüroth's Theorem | 11 | | §1.30 Artin-Schreier Theory of Formally Real Fields | 11 | | §1.31 Theorem of Castelnuovo-Zariski | 12 | | §1.32 Monotone Minimal Generator Functions | 12 | | $\S1.33$ Quigley's Theorem: Maximal Subfields without α | 13 | | | | | | | | Chapter 2. Introduction to Ring Theory: Schur's Lemma and Semisim- | | | ple Rings, Prime and Primitive Rings, Noetherian and Artinian | | | Modules, Nil, Prime and Jacobson Radicals | 15 | | • Quaternions | 15 | | • Hilbert's Division Algebra | 16 | | • When Everybody Splits | 16 | | Artinian Rings and the Hopkins-Levitzki Theorem | 17 | | • Automorphisms of Simple Algebras: The Theorem of Skolem-Noether | 18 | | • Wedderburn Theory of Simple Algebras | 19 | | • Crossed Products and Factor Sets | 19 | | • Primitive Rings | 20 | | • Nil Ideals and the Jacobson Radical | 20 | | • The Chevalley-Jacobson Density Theorem | 20 | | • Semiprimitive Rings | 21 | | • Semiprimitive Polynomial Rings | 21 | | Matrix Algebraic Algebras | 21 | | Primitive Polynomial Rings | 22 | | • The Structure of Division Algebras | 23 | | • Tsen's Theorem | 23 | | • Cartan-Jacobson Galois Theory of Division Rings | 23 | | • Historical Note: Artin's Question | 24 | | • Jacobson's $a^{n(a)} = a$ Theorems and Kaplansky's Generalization | 24 | | • Kaplansky's Characterization of Radical Field Extensions | 25 | | • Radical Extensions of Rings | 25 | | • The Cartan-Brauer-Hua Theorem on Conjugates in Division Rings | 26 | | • Hua's Identity | 27 | | • Amitsur's Theorem and Conjugates in Simple Rings | 28 | | • Invariant Subrings of Matrix Rings | 28 | | • Rings Generated by Units | 29 | | • Transvections and Invariance | 30 | | • Other Commutativity Theorems | 30 | | • Noetherian and Artinian Modules | 31 | | • The Maximum and Minimum Conditions | 31 | | • Inductive Sets and Zorn's Lemma | 31 | | Subdirectly Irreducible Modules: Birkhoff's Theorem Jordan Hölden Theorem for Communities Series | 31 | | • Jordan-Hölder Theorem for Composition Series | 33 | | • Two Noether Theorems | 33 | | Hilbert Basis Theorem Hilbert's Fourteenth Broblem, Nameta's Solution | 34 | | • Hilbert's Fourteenth Problem: Nagata's Solution | 35 | | Y 1 D 11 | | |--|------------| | • Noether's Problem in Galois Theory: Swan's Solution | 35 | | • Realizing Groups as Galois Groups | 35 | | • Prime Rings and Ideals | 36 | | • Chains of Prime Ideals | 36 | | • The Principal Ideal Theorems and the DCC on Prime Ideals | 36 | | Primary and Radical Ideals | 37 | | • Lasker-Noether Decomposition Theorem | 37 | | Hilbert Nullstellensatz | 38 | | Prime Radical Nile and Nile advant Ideals | 39 | | Nil and Nilpotent Ideals Nil Radicals | 40 | | | 41 | | Semiprime Ideals and Unions of Prime Ideals Manipulation Ideals And Prime | 42 | | Maximal Annihilator Ideals Are Prime Dings with Ass on Applibilator Ideals | 43 | | Rings with Acc on Annihilator Ideals The Baer Lower Nil Radical | 43
44 | | | 44 | | Group Algebras over Formally Real Fields Locabson's Conjecture for Crown Algebras | 46 | | Jacobson's Conjecture for Group Algebras Simplicity of the Lie and Jordan Rings of Associative Rings: | 40 | | Herstein's Theorems | 46 | | • Simple Rings with Involution | 47 | | • Symmetric Elements Satisfying Polynomial Identities | 48 | | Historical Notes | 48 | | • Separable Fields and Algebras | 49 | | Wedderburn's Principal or Factor Theorem | 49 | | • Invariant Wedderburn Factors | 49 | | | | | Chapter 3. Direct Decompositions of Projective and Injective Modules | 51 | | • Direct Sums of Countably Generated Modules | 51 | | • Injective Modules and the Injective Hull | 52 | | • Injective Hulls: Baer's and Eckmann-Schöpf's Theorems | 52 | | • Complement Submodules and Maximal Essential Extensions | 52 | | • The Cantor-Bernstein Theorem for Injectives | 53 | | • Generators and Cogenerators of Mod-R | 53 | | • Minimal Cogenerators | 54 | | • Cartan-Eilenberg, Bass, and Matlis-Papp Theorems | 5 4 | | • Two Theorems of Chase | 54 | | • Sets vs. Classes of Modules: The Faith-Walker Theorems | 58 | | Polynomial Rings over Self-injective or QF Rings | 56 | | • Σ-injective Modules | 5' | | • Quasi-injective Modules and the Johnson-Wong Theorem | 5' | | • Dense Rings of Linear Transformations and Primitive Rings | | | Revisited | 5 | | • Harada-Ishii Double Annihilator Theorem | 5 | | • Double Annihilator Conditions for Cogenerators | 5 | | • Koehler's and Boyle's Theorems | 5 | | Quasi-injective Hulls | 6 | | • The Teply-Miller Theorem | 6 | | • Semilocal and Semiprimary Rings | 6 | | | ~ | | • Regular Elements and Ore Rings | 61 | |--|----| | • Finite Goldie Dimension | 62 | | • Cailleau's Theorem | 62 | | • Local Rings and Chain Rings | 62 | | • Uniform Submodules and Maximal Complements | 63 | | Beck's Theorems | 63 | | • Dade's Theorem | 64 | | • When Cyclic Modules Are Injective | 65 | | • When Simple Modules Are Injective: V-Rings | 65 | | • Cozzens' V-Domains | 66 | | • Projective Modules over Local or Semilocal Rings, or Semihereditary | | | Rings | 66 | | • Serre's Conjecture, the Quillen-Suslin Solution and Seshadri's Theorem | 67 | | • Bass' Theorem on When Big Projectives Are Free | 67 | | • Projective Modules over Semiperfect Rings | 67 | | Bass' Perfect Rings | 68 | | • Theorems of Björk and Jonah | 69 | | • Max Ring Theorems of Hamsher, Koifman, and Renault | 69 | | • The Socle Series of a Module and Loewy Modules | 69 | | • Semi-Artinian Rings and Modules | 70 | | • The Perlis Radical and the Jacobson Radical | 70 | | • The Frattini Subgroup of a Group | 71 | | • Krull's Intersection Theorem and Jacobson's Conjecture | 71 | | Nakayama's Lemma | 71 | | • The Jacobson Radical and Jacobson-Hilbert Rings | 72 | | • When Nil Implies Nilpotency | 73 | | • Shock's Theorem | 73 | | • Kurosch's Problem | 74 | | • The Nagata-Higman Theorem | 74 | | • N ₀ -Categorical Nil Rings Are Nilpotent | 74 | | • The Golod-Shafarevitch Theorem | 75 | | • Some Amitsur Theorems on the Jacobson Radical | 75 | | • Köethe's Radical and Conjecture | 76 | | • A General Wedderburn Theorem | 76 | | • Koh's Schur Lemma | 77 | | • Categories | 77 | | Morita's Theorem | 77 | | • Theorems of Camillo and Stephenson | 78 | | • The Basic Ring and Module of a Semiperfect Ring | 78 | | • The Regularity Condition and Small's Theorem | 79 | | • Reduced Rank | 79 | | • Finitely Embedded Rings and Modules: Theorems of Vámos and Beachy | 80 | | • The Endomorphism Ring of Noetherian and Artinian Modules | 81 | | • Fitting's Lemma | 81 | | • Köthe-Levitzki Theorem | 82 | | • Levitzki-Fitting Theorem | 83 | | Kolchin's Theorem | 84 | | Historical Notes on Local and Semilocal Rings | 85 | | - 110001001 110000 On Local and Demillocal Hillgs | 00 | | • Further Notes for Chapter 3 | 87 | |--|-----| | • Free Subgroups of $GL(n, F)$ | 87 | | • Sanov's Theorem | 87 | | Hartley-Pickel Theorem | 88 | | • Steinitz Rings | 88 | | • Free Direct Summands | 88 | | • Essentially Nilpotent Ideals | 88 | | | | | Chapter 4. Direct Product Decompositions of von Neumann Regular Rings | | | and Self-injective Rings | 89 | | • Flat Modules | 90 | | • Character Modules and the Bourbaki-Lambek Theorem | 90 | | • When Everybody Is Flat | 91 | | • Singular Splitting | 92 | | • Utumi's Theorems | 93 | | • Weak or $F \cdot G$ Injectivity | 93 | | • Abelian VNR Rings | 94 | | • The Maximal Regular Ideal | 94 | | Products of Matrix Rings over Abelian VNR Rings | 95 | | • Products of Full Linear Rings | 95 | | • Dedekind Finite | 95 | | • Jacobson's Theorem | 96 | | Shepherdson's and Montgomery's Examples | 96 | | Group Algebras in Characteristic 0 Are Dedekind Finite | 96 | | • Prime Right Self-injective VNR Rings | 97 | | Goodearl-Handelman Characterization of Purely Infinite Rings | 97 | | Kaplansky's Direct Product Decompositions of VNR Rings | 97 | | • Kaplansky's Conjecture on VNR Rings: Domanov's Counterexample | | | and Goodearl's and Fisher-Snider's Theorems | 98 | | • Azumaya Algebras | 98 | | Hochschild's Theorem on Separable Algebras | 99 | | • The Auslander-Goldman-Brauer Group of a Commutative Ring | 100 | | Menal's Theorem on Tensor Products of SI or VNR Algebras | 100 | | • Lawrence's Theorem on Tensor Products of Semilocal Algebras | 100 | | • Armendariz-Steinberg Theorem | 101 | | • Strongly Regular Extensions of Rings | 101 | | • Pseudo-Frobenius (PF) Rings | 101 | | • Kasch Rings | 102 | | • FPF Rings | 103 | | Chartes E. Direct Cours of C. al. M. J. | | | Chapter 5. Direct Sums of Cyclic Modules | 105 | | Uniserial and Serial Rings Name of the Rings | 105 | | Nonsingular Rings PGG B: | 107 | | • FGC Rings | 107 | | • Linearly and Semicompact Modules | 108 | | Maximal Rings | 108 | | • Almost Maximal Valuation, and Arithmetic Rings | 108 | | • Torch Rings | 109 | | • Fractionally Self-injective Rings | 109 | |--|-----| | • FGC Classification Theorem | 110 | | • Maximal Completions of Valuation Rings | 111 | | • MacLane's and Vámos' Theorems | 111 | | • Gill's Theorem | 111 | | • Vamosian Rings | 112 | | • Quotient Finite Dimensional Modules | 112 | | The Genus of a Module and Generic Families of Rings | 113 | | • The Product Theorem | 114 | | • Serre's Condition | 115 | | • FPF Split Null Extensions | 116 | | Characterization of Commutative FPF Rings | 117 | | • Semiperfect FPF Rings | 117 | | • Faticoni's Theorem | 118 | | Kaplansky's and Levy's Maximal Valuation Rings | 118 | | • Page's Theorems | 118 | | Further Examples of Valuation Rings and PF Rings | 119 | | Historical Note | 120 | | | | | Chapter 6. When Injectives Are Flat: Coherent FP-injective Rings | 121 | | • Pure Injective Modules | 121 | | • Elementary Divisor Rings | 123 | | • Stable Range and the Cancellation Property | 124 | | • Fractionally Self FP-Injective Rings | 124 | | • Coherent Rings: Theorems of Chase, Matlis and Couchot | 125 | | • When Injective Modules Are Flat: IF Rings | 126 | | Power Series over VNR and Linear Compact Rings | 126 | | Historical Note | 127 | | • Locally Split Submodules | 127 | | • Existentially Closed Rings | 128 | | • Existentially Closed Fields | 129 | | • Other Embeddings in Skew Fields | 129 | | • Galois Subrings of Ore Domains Are Ore | 130 | | Rings with Zero Intersection Property on Annihilators: Zip Rings | 130 | | • On a Question of Mal'cev: Klein's Theorem | 131 | | • Weakly Injective Modules | 132 | | • Gauss Elimination and Weakly Injectivity | 132 | | • Zip McCoy Rings | 132 | | • Elementary Equivalence | 134 | | • Pure-Injective Envelopes | 135 | | • Ziegler's Theorem | 136 | | • Noetherian Pure-Injective Rings | 137 | | • Σ -Pure-Injective Modules | 137 | | • Pure-Semisimple Rings | 137 | | Chapter 7. Direct Decompositions and Dual Generalizations of Noetherian | | | Rings | 139 | | PP Rings and Finitely Generated Flat Ideals | 139 | | • Right Bezout Rings | 140 | |---|-----| | • Faith-Utumi Theorem | 140 | | • Finitely Embedded Rings | 141 | | • Simple Noetherian Rings | 141 | | • Simple Differential Polynomial Rings | 142 | | • The Weyl Algebra | 143 | | When Modules Are Direct Sums of a Projective and a Noetherian | | | Module | 144 | | • When Modules Are Direct Sums of an Injective and a Noetherian | | | Module | 144 | | • Dual Generalizations of Artinian and Noetherian Modules | 145 | | • Completely Σ-Injective Modules | 146 | | • Ore Rings Revisited | 147 | | On Hereditary Rings and Boyle's Conjecture | 148 | | • Δ -Injective Modules | 150 | | • Co-Noetherian Rings | 152 | | | | | Chapter 8. Completely Decomposable Modules and the Krull-Schmidt- | | | Azumaya Theorem | 153 | | Herbera-Shamsuddin and Camps-Dicks Theorems Swan's Theorem | 153 | | • Evans' Theorem | 154 | | Matlis' Problem | 154 | | • The Exchange Property and Direct Sums of Indecomposable Injective | 154 | | Modules | 155 | | • Crawley-Jónsson Theorem | 155 | | Warfield, Nicholson and Monk Theorems | 156 | | • II-Regular Rings | 157 | | • Yamagata's Theorem | 158 | | • Decompositions Complementing Direct Summands | 158 | | • Fitting's Lemma and the Krull-Schmidt Theorem | 159 | | A Very General Schur Lemma | 160 | | • Rings of Finite and Bounded Module Type | 160 | | | 100 | | Chapter 9. Polynomial Rings over Vamosian and Kerr Rings, Valuation | | | Rings and Prüfer Rings | 163 | | • Kerr Rings and the Camillo-Guralnick Theorem | 163 | | • Rings with Few Zero Divisors Are Those with Semilocal | | | Quotient Rings | 164 | | Manis Valuation Rings | 165 | | • Integrally Closed Rings | 165 | | • Kaplansky's Question | 166 | | • Local Manis Valuation Rings | 166 | | Domination of Local Rings | 167 | | • Marot Rings | 168 | | • Krull Rings | 169 | | • Rings with Krull | 169 | | • Annie Page's Theorem | 169 | | The Maximal Quotient Ring of a Commutative Ring The Ring of Finite Fractions Prüfer Rings and Davis, Griffin and Eggert Theorems Strong Prüfer Rings Discrete Prüfer Domains Strongly Discrete Domains Generalized Dedekind Rings Facchini's Theorems on Piecewise Noetherian Rings | 169
170
170
171
171
171
172 | |--|---| | Chapter 10. Isomorphic Polynomial Rings and Matrix Rings • Hochster's Example of a Non-unique Coefficient Ring • Brewer-Rutter Theorems • The Theorems of Abhyankar, Heinzer and Eakin • Isomorphic Matrix Rings • Lam's Survey | 173
173
173
173
174 | | Chapter 11. Group Rings and Maschke's Theorem Revisited Connell's Theorems on Self-injective Group Rings Perfect and Semilocal Group Rings von Neumann Regular Group Rings Jacobson's Problem on Group Algebras Isomorphism of Group Algebras: The Perlis-Walker Theorem Dade's Examples Higman's Problem Theorems of Higman, Kasch-Kupisch-Kneser on Group Rings of Finite Module Type Janusz and Srinivasan Theorems Morita's Theorem Roseblade's Theorems on Polycyclic-by-Finite Group Rings A Weak Nullstellensatz Hilbert Group Rings | 175
175
176
176
176
176
177
177
177
177
178
178 | | Chapter 12. Maximal Quotient Rings • The Maximal Quotient Ring • When $Q_{\max}^r(R) = Q_{\max}^\ell(R)$: Utumi's Theorem • Courter's Theorem on When All Modules Are Rationally Complete • Snider's Theorem on Group Algebras of Characteristic 0 • Galois Subrings of Quotient Rings • Localizing Categories and Torsion Theories • Ring Epimorphisms and Localizations • Continuous Regular Rings • Complemented and Modular Lattices • von Neumann's Coordinatization Theorem • von Neumann's Dimension Function • Utumi's Characterization of Continuous VNR Rings • Semi-continuous Rings and Modules • CS Projective Modules • Strongly Prime Rings | 179
180
181
182
182
183
184
185
186
186
186
187
190 | | Chapter 13. Morita Duality and Dual Rings | 193 | |---|-------------------| | • Dual Rings | 196 | | • Skornyakov's Theorem on Self-dual Lattices of Submodules | 196 | | • Hajarnavis-Norton Theorem | 196 | | • Faith-Menal Theorem | 197 | | • Commutative Rings with QF Quotient Rings | 198 | | • On a Vasconcelos Conjecture | 198 | | • Kasch-Mueller Quasi-Frobenius Extensions | 199 | | Balanced Rings and a Problem of Thrall | 199 | | • When Finitely Generated Modules Embed in Free Modules | 200 | | • A Theorem of Pardo-Asensio and a Conjecture of Menal | 202 | | Johns' Rings Revisited | 202 | | • Two Theorems of Gentile and Levy on When Torsionfree Modules | 202 | | Embed in Free Modules | 203 | | • When an Ore Ring Has Quasi-Frobenius Quotient Ring | 203 | | • Levy's Theorem | 203 | | · | 203 | | Chapter 14. Krull and Global Dimensions | 205 | | Homological Dimension of Rings and Modules | 206 | | • The Hilbert Syzygy Theorem | 207 | | • Regular Local Rings | 207 | | • Noncommutative Rings of Finite Global Dimension | 210 | | Classical Krull Dimension | 211 | | • Krull Dimension of a Module and Ring | 211 | | • Critical Submodules | 214 | | • Acc on Radical Ideals (Noetherian Spec) | 215 | | • Goodearl-Zimmermann-Huisgen Upper Bounds on Krull Dimension | $\frac{215}{215}$ | | • McConnell's Theorem on the <i>n</i> -th Weyl Algebra | $\frac{213}{218}$ | | • Historical Note | 218 | | | 210 | | Chapter 15. Polynomials Identities and PI-Rings | 001 | | Amitsur-Levitski Theorem | 221 | | • Kaplansky-Amitsur Theorem | 223 | | • Posner's Theorem | 223 | | Nil PI-Algebras Are Locally Nilpotent | 224 | | • Rowen PI-Algebras | 224 | | • Generic Matrix Rings Are Ore Domains | 225 | | • Generic Division Algebras Are Not Crossed Products | 226 | | When Fully Bounded Noetherian Algebras Are PI-Algebras | 226 | | • Notes on Prime Ideals | 226 | | Historical Notes | 227 | | • IIIbioricai ivoica | 227 | | Chapter 16. Unions of Primes, Prime Avoidance, Associated Prime Ideals, | | | Acc on Irreducible Ideals, and Annihilator Ideals in Commutative | | | Rings | 229 | | • McCoy's Theorem | 229 | | • The Baire Category Theorem and the Prime Avoidance Theorem | 229 | | • W. W. Smith's Prime Avoidance Theorem and Gilmer's Dual | 230 | | • Irreducible Modules Revisited | 231 | | • (Subdirectly) Irreducible Submodules | 231 | |--|-------------------| | • Associated Prime Ideals | 233 | | • Chain Conditions on Annihilators | 235 | | Semilocal Kasch Quotient Rings | 237 | | Acc⊥ Rings Have Semilocal Kasch Quotient Rings | 238 | | • Beck's Theorem | 238 | | • Acc on Irreducible Right Ideals | 239 | | • Nil Singular Ideals | 239 | | • Primary Ideals | 240 | | • Characterization of Noetherian Modules | 241 | | • Camillo's Theorem | 242 | | Chapter 17. Dedekind's Theorem on the Independence of Automorphisms | | | Revisited | 243 | | • Conventions | 243 | | • Résumé of Results | 244 | | Dependent Automorphisms of Polynomial and Power Series Rings | 244 | | • Normal Basis | 245 | | • The Dependence Theorem | 245 | | • The Skew Group Ring | 246 | | • The Induction Theorem | 247 | | • Radical Extensions | 247 | | • Partial Converse to Theorem 17.4 | 248 | | • Kaplansky's Theorem Revisited | 248 | | • Reduced Rings | 249 | | • The Role of Ideals in Dependency | 250 | | • Galois Subrings of Independent Automorphism Groups of | | | Commutative Rings Are Quorite | 250 | | • Automorphisms Induced in Residue Rings (For Sam Perlis on His | | | 85th Birthday) | 252 | | • Notes on Independence of Automorphisms | 253 | | • Letter from Victor Camillo (Excerpts) | 254 | | Part II. Snapshots | | | Chapter 18. Some Mathematical Friends and Places | 255 | | • Some Profs at Kentucky and Purdue | $\frac{255}{255}$ | | Mama and Sis | 256 | | • Perlis' Pearls | 256 | | • The Ring's the Thing | 257 | | • My "Affair" with Ulla | 257 | | How I Taught Fred to Drive | 257 | | • "The Old Dog Laughed To See Such Fun" | 258 | | • My "Lineage"—Math and Other | 258 | | • Big Brother—"Edgie" | 258 | | • H.S.F. Jonah and C. T. Hazard | 259 | | John Dyer-Bennet and Gordon Walker | 259 | | Henriksen, Gilman, Jerison, McKnight, Kohls and Correl | 260 | | <u> </u> | | | • Joop and Vilna, Len and Reba | 260 | |---|-----| | • Some Fellow Students at Purdue | 260 | | • Michigan State University (1955–1957) | 261 | | • Sam Berberian, Bob Blair, Gene Deskins, and the Oehmkes | 261 | | • "Cupcake" | 262 | | Leroy M. Kelly, Fritz Herzog, Ed Silverman and Vern Grove | 262 | | • Orrin Frink | 262 | | Gottfried Köthe and Fritz Kasch | 263 | | Romantische Heidelberg | 263 | | • Reinhold Baer | 263 | | • Death in Munich (1960) | 264 | | Marston Morse and the Invitation to the Institute | 264 | | • What Frau Seifert Told Me | 265 | | • "Some Like It Hot" (Manche Mög Es Heiss) | 265 | | Marston Morse | 265 | | Marston and Louise | 266 | | • Louise Morse: Picketing IDA | 266 | | • Kay and Deane Montgomery | 267 | | • "Leray Who?" | 267 | | • How Deane Helped Liberate Rutgers | 268 | | • Hassler Whitney | 268 | | • John Milnor | 269 | | • Paul Fussell | 269 | | • Hetty and Atle Selberg | 269 | | • Another Invitation to the Institute | 270 | | • The Idea of the Institute As an Intellectual Hotel | 270 | | • Oppie and Kitty | 270 | | • Gaby and Armand Borel | 270 | | • Gaby | 271 | | • Alliluyeva | 271 | | • George F. Kennan | 271 | | • Kennan's Memoirs | 272 | | • Kurt Gödel | 273 | | • P. J. Cohen | 273 | | • Kurosch Meets Witt | 273 | | • Hitler's View of the Institute | 274 | | • The Interesting Case of Threlfall | 274 | | My Friendship with Witt | 274 | | • My First Paper at the Institute: Communicated by Nathan Jacobson | 275 | | • "Proofs Too Short" | 275 | | • Caroline D. Underwood | 275 | | Mort and Karen Brown | 275 | | • Leah and Clifford Spector | 276 | | • John Ernest | 276 | | • "I Like This Motel" | 276 | | • Institute Cats | 276 | | • Yitz | 277 | | • Injective Modules and Quotient Rings | 277 | | • Fritz, Bruno, Rudy and Ulrich | 977 | | • The High Cost of Living in Germany (1959–1960) | 277 | |---|-----| | • Steve Chase | 278 | | • The Institute and Flexner's Idea | 278 | | • Lunch with Dyson, Lee, Yang and Pais | 278 | | • Helen Dukas | 279 | | • Arthur and Dorothy Guy | 279 | | Patricia Kelsh Woolf | 280 | | Johnny von Neumann and "The Maniac" | 281 | | • Who Got Einstein's Office? | 281 | | • The Walkers, Frank Anderson, and Eben Matlis | 281 | | • Carol and Elbert | 282 | | • "Waiting for Gottfried" | 282 | | • Harish-Chandra | 282 | | • Veblen, Tea, and the Arboretum | 283 | | • "On the Banks of the Old Raritan" (School Song) | 283 | | • The Bumby-Osofsky Theorem | 284 | | • Osofsky's Ph.D. Thesis | 284 | | • Yuzo | 284 | | • At the Stockholm ICM (1962) | 285 | | Nathan Jacobson | 285 | | How Jake Helped Me and Rutgers | 286 | | • Vic, John, Midge, and Ann | 286 | | • A Problem of Bass and Cozzens' Ph.D. Thesis | 287 | | Boyle's Ph.D. Thesis and Conjecture | 287 | | • A Problem of Thrall and Camillo's Ph.D. Thesis | 287 | | Avraham and Ahuva | 288 | | • Abraham Zaks | 288 | | Professor Netanyahu | 288 | | Jonathan and Hembda Golan | 288 | | • Shimshon Amitsur | 288 | | • Amitsur's "Absence of Leave" | 289 | | • Miriam Cohen | 289 | | Joy KinsburgPaul Erdős | 289 | | | 290 | | • What Is Your Erdős Number? | 290 | | Piatetski-Shapiro Is Coming!Gerhard Hochschild on Erdős | 291 | | Joachim Lambek | 291 | | • S. K. Jain and India | 291 | | • Kashmiri Gate at 5:00 P.M. | 292 | | • Toot-Toot for a Day! Toot-Toot for an Age! | 292 | | • The Rupee Mountain | 293 | | | 294 | | K. G. Ramanathan and Bhama Srinivasan (Bombay and Madras) The Indian Idea of Karma | 294 | | Joan and Charles Neider | 294 | | • Charley | 295 | | • Louis Fischer and Gandhi | 295 | | • Sputnik! | 296 | | Govaru Po Russki? My Algebra Speaks Russian | 296 | | 5 Tracom. Inj Angeona opeans Russian | 296 | | • Walter Kaufmann and Nietzsche | 297 | |---|-----| | • Hessy and Earl Taft | 297 | | • Kenneth Wolfson, Antoni Kosinki, and Glen Bredon | 298 | | • Paul Moritz Cohn | 299 | | Joanne Elliott, Vince Cowling, and Jane Scanlon | 299 | | • Rutgers Moves Up! | 299 | | • Roz Wolfson | 300 | | • The George William Hill Center | 300 | | Daniel Gorenstein and the Classification of Simple Groups | 300 | | • The Monster Group | 301 | | • Danny and Yitz | 301 | | • Gorenstein Rings | 301 | | • All the News That Is Fit To Print" - New York Times | 301 | | • The Gorenstein Report and "Dream Time" | 302 | | • Helen and Danny | 302 | | • Ken Goodearl, Joe Johnson, and John Cozzens | 303 | | Hopkins and Levitzki | 304 | | • Jakob Levitzki | 304 | | • Chuck Weibel and Tony Geramita at the Institute (1977-1978) | 304 | | How I Helped Recruit Chuck | 305 | | • Poobhalan Pillay, Lalita, and Karma | 305 | | • "Tommy" Tominaga and "Tokyo Rose" | 306 | | • Ted Faticoni, the Walkers and Me at Las Cruces | 306 | | New Mexico | 307 | | • Rio Grande | 307 | | • Dolors Herbera and Ahmad Shamsuddin at Rutgers (1993-1994) | 308 | | • Pere Menal | 308 | | Alberto Facchini and More Karma | 309 | | Barcelona and Bellaterra | 310 | | • Gaudí's Genius | 311 | | • The Ramblas | 311 | | Norman Steenrod | 312 | | • Kaplansky, Steenrod and Borel | 312 | | • Kap | 312 | | • Kap's "Rings and Things" | 313 | | • "The World's Greatest Algebra Seminar" | 313 | | • Samuel Eilenberg | 313 | | • Myles "Tiernovsky" | 314 | | • Sammy Collects Indian Sculpture | 314 | | • "The Only Thing They Would Let Us Do" | 314 | | • Emil Artin | 315 | | Michael Artin Huisansita Tanana | 316 | | • University Towns | 316 | | • Some Cafés and Coffee Houses | 317 | | • "Crazy Eddie", Svetlana, "Captain" Bill, and Jay | 318 | | Jay and Stan Pow Hutton and Via Chwills To a Pow Mail Control of the Con | 318 | | • Roy Hutson and Vic Camillo—Two Poet Mathematicians | 319 | | Marc Rieffel, Serge Lang, Steve Smale and Me Product Very Proposition March Production Company (1997) | 319 | | Parlez-Vous Français? My Proof Speaks French | 320 | | • Mario Savio and The Berkeley Free Speech Movement (1964) | 320 | |---|-----| | • Jerry Rubin | 321 | | • Steve Smale | 321 | | Some Undergraduate Gems at Rutgers and Penn State | 321 | | • "Carl, You Will Always Have Dumb Students" | 322 | | • Envoi to My Century | 323 | | Index to Part II | S-1 | | Bibliography | 325 | | Register of Names | 387 | | Index of Terms and Authors of Theorems | 395 |