TABLE OF CONTENTS

CHAP			PAGI
I.	INTRO	DUCTORY CONCEPTS	
	§ 1.	Binary operations	1
		Groups	3
	§ 3.	Subgroups	4
	§ 4.	Abelian groups	6
		Rings	6 7 8
	§ 6.	Rings with identity	8
	§ 7.	Powers and multiples	9
		Fields	10
	§ 9.	Subrings and subfields	10
		Transformations and mappings	12
		Group homomorphisms	13
	§ 12.	Ring homomorphisms	16
	§ 13.	Identification of rings	19
		Unique factorization domains	21
	§ 15.	Euclidean domains	22
	§ 16.	Polynomials in one indeterminate	24
		Polynomial rings	28
	§ 18.	Polynomials in several indeterminates	34
	§ 19.	Quotient fields and total quotient rings	41
	§ 20.	Quotient rings with respect to multiplicative systems	46
	§ 21.	Vector spaces	49
II.	ELEMI	ENTS OF FIELD THEORY	
	§ 1.	Field extensions	55
	§ 2.	Algebraic quantities	55
	§ 3.	Algebraic extensions	60
	§ 4.	The characteristic of a field	62
		Separable and inseparable algebraic extensions	65
	§ 6.	Splitting fields and normal extensions	72
		The fundamental theorem of Galois theory	80
		Galois fields	82
	§ 9.	The theorem of the primitive element	84
		•	

TABLE OF CONTENTS

X

§ 10. Field polynomials. Norms and traces	PAGE 86
§ 10. The discriminant	92
§ 12. Transcendental extensions	95
§ 13. Separably generated fields of algebraic functions	102
§ 14. Algebraically closed fields	106
§ 15. Linear disjointness and separability	109
§ 16. Order of inseparability of a field of algebraic functions	113
§ 17. Derivations	120
III. IDEALS AND MODULES	
	132
§ 1. Ideals and modules	136
§ 2. Operations on submodules	138
§ 3. Operator homomorphisms and difference modules	140
§ 4. The isomorphism theorems	142
§ 5. Ring homomorphisms and residue class rings § 6. The order of a subset of a module	144
§ 7. Operations on ideals	146
§ 8. Prime and maximal ideals	149
§ 9. Primary ideals	152
§ 10. Finiteness conditions	155
§ 11. Composition series	158
§ 12. Direct sums	163
§ 12 ^{bis} . Infinite direct sums	172
§ 13. Comaximal ideals and direct sums of ideals	174
§ 14. Tensor products of rings	179
§ 15. Free joins of integral domains (or of fields)	187
IV. NOETHERIAN RINGS	
§ 1. Definitions. The Hilbert basis theorem	199
	203
§ 2. Rings with descending chain condition	204
§ 3. Primary rings	206
§ 3 ^{bis} . Alternative method for studying the rings with d.c.c.	208
§ 4. The Lasker-Noether decomposition theorem	210
§ 5. Uniqueness theorems	213
§ 6. Application to zero-divisors and nilpotent elements	
§ 7. Application to the intersection of the powers of an ideal	218
§ 8. Extended and contracted ideals	221
§ 9. Quotient rings	223
§ 10. Relations between ideals in R and ideals in R_{μ}	

т	٨	ים	T	OF	CON	TTE	NITTO
	н	n	I.P.	()P	CON	1 1 1	NI.

	,
v	1
^	

CHAPTER	
§ 11. Examples and applications of quotient rings	227
§ 12. Symbolic powers	232
§ 13. Length of an ideal	233
§ 14. Prime ideals in noetherian rings	237
§ 15. Principal ideal rings	242
§ 16. Irreducible ideals	247
Appendix: Primary representation in noetherian modules	252
V. DEDEKIND DOMAINS. CLASSICAL IDEAL	
THEORY	
§ 1. Integral elements	254
§ 2. Integrally dependent rings	257
§ 3. Integrally closed rings	260
§ 4. Finiteness theorems	264
§ 5. The conductor of an integral closure	269
§ 6. Characterizations of Dedekind domains	270
§ 7. Further properties of Dedekind domains	278
§ 8. Extensions of Dedekind domains	281
§ 9. Decomposition of prime ideals in extensions of	
Dedekind domains	284
§ 10. Decomposition group, inertia group, and ramification	
groups	290
§ 11. Different and discriminant	298
§ 12. Application to quadratic fields and cyclotomic fields	312
§ 13. A theorem of Kummer	317
INDEX OF NOTATIONS	321
INDEX OF DEFINITIONS	323