CONTENTS

Preface
Notes for the reader

1. The language of functors

- **1.1** Notation
- **1.2** Bimodules
- **1.3** Covariant functors
- **1.4** Contravariant functors
- **1.5** Additional structure
- **1.6** Bifunctors
- **1.7** Equivalent functors

Solutions to the Exercises on Chapter 1
Supplementary Exercises on Chapter 1

2. The Hom functor

- **2.1** Notation
- **2.2** The Hom functor
- **2.3** Projective modules
- **2.4** Injective modules
- **2.5** Injective \(\mathbb{Z} \)-modules
- **2.6** Essential extensions and injective envelopes

Solutions to the Exercises on Chapter 2

3. A derived functor

- **3.1** Notation
- **3.2** A basic isomorphism
- **3.3** Some remarks on diagrams
- **3.4** The Ker–Coker sequence
- **3.5** Further properties of \(\text{Ext}^1_{\Lambda} \)
- **3.6** Consequences of the vanishing of \(\text{Ext}^1_{\Lambda} (A, B) \)
- **3.7** Projective and injective dimension
CONTENTS

3.8 A-sequences
3.9 The extension problem
Solutions to the Exercises on Chapter 3

4. Polynomial rings and matrix rings
4.1 General
4.2 The polynomial functor
4.3 Generators of a category
4.4 Equivalent categories
4.5 Matrix rings
Solutions to the Exercises on Chapter 4

5. Duality
5.1 General remarks
5.2 Noetherian and Artinian conditions
5.3 Preliminaries concerning duality
5.4 Annihilators
5.5 Duality in Noetherian rings
5.6 Perfect duality and Quasi-Frobenius rings
5.7 Group rings as Quasi-Frobenius rings
Solutions to the Exercises on Chapter 5

6. Local homological algebra
6.1 Notation
6.2 Projective covers
6.3 Quasi-local and local rings
6.4 Local Quasi-Frobenius rings
6.5 Modules over a commutative ring
6.6 Algebras
6.7 Semi-commutative local algebras
Solutions to the Exercises on Chapter 6

References
Index