Table of Contents

	ctionisites	
Chapter	1. Affine Varieties	1
§1A.	Their Definition, Tangent Space, Dimension, Smooth and Singular Points	1
§1B.	Analytic Uniformization at Smooth Points, Examples of Topological Knottedness at Singular Points	9
§1C.	$\mathcal{O}_{x,\chi}$ a UFD when x Smooth; Divisor of Zeroes and Poles of Functions	14
Chapter	2. Projective Varieties	20
§2A.	Their Definition, Extension of Concepts from Affine to Projective Case	20
§2B.	Products, Segre Embedding, Correspondences	
§2C.	Elimination Theory, Noether's Normalization Lemma, Density of Zariski-Open Sets	33
Chapter 3. Structure of Correspondences		40
§3A.	Local Properties—Smooth Maps, Fundamental Openness Principle, Zariski's Main Theorem	
§3B.	Global Properties—Zariski's Connectedness Theorem,	
§3C.	Specialization Principle Intersections on Smooth Varieties	56
Chapter	4. Chow's Theorem	59
§4A.	Internally and Externally Defined Analytic Sets and their Local Descriptions as Branched Coverings of C ⁿ	50
§4B.	Applications to Uniqueness of Algebraic Structure and Connectedness	
Chapter	5. Degree of a Projective Variety	
§5A.	Definition of deg X , mult _x X , of the Blow up $B_x(X)$, Effect of a Projection, Examples	70

§5B.	Bezout's Theorem	80
§5C.	Volume of a Projective Variety; Review of Homology,	
	DeRham's Theorem, Varieties as Minimal Submanifolds	85
Chapter	6. Linear Systems	96
8.6.4	The Correspondence between Linear Systems and Rational Maps,	
§6A.	Examples; Complete Linear Systems are Finite-Dimensional	96
8 CD	Differential Forms, Canonical Divisors and Branch Loci	104
§6B.	Hilbert Polynomials, Relations with Degree	110
9 O.C.	Hilbert Polynomials, Relations with Degree The Weil Semuel Algebraic Theory of	110
Appe	ndix to Chapter 6. The Weil-Samuel Algebraic Theory of Multiplicity	116
	Multiplicity	110
Ch a méa	r 7. Curves and Their Genus	127
Chapte	7. Curves and Then Genus	1 20 /
874	Existence and Uniqueness of the Non-Singular Model of Each	
¥ / A.	Function Field of Transcendence Degree 1 (after Albanese)	127
§7B.	Arithmetic Genus = Topological Genus; Existence of Good	
¥ / D.	Projections to \mathbb{P}^1 , \mathbb{P}^2 , \mathbb{P}^3	131
§7C.	Residues of Differentials on Curves, the Classical Riemann-Roch	
3 / C.	Theorem for Curves and Applications	142
87D	Curves of Genus 1 as Plane Cubics and as Complex Tori \mathbb{C}/L	149
8 / D.	Curves of Genus 1 as Flanc Cubics and as Complex 1011 C/ E	
Chanta	r 8. The Birational Geometry of Surfaces	156
Chapte	1 8. The Birational Geometry of Surfaces	
§8A.	Generalities on Blowing up Points	156
§ 8B.	Resolution of Singularities of Curves on a Smooth Surface by	
0 0 2 .	Blowing up the Surface; Examples	160
§8C.	Factorization of Birational Maps between Smooth Surfaces;	
• • • • • • • • • • • • • • • • • • • •	the Trees of Infinitely Near Points	168
§8D.		
•02.	Surfaces; the 27 Lines on a Cubic Surface	172
	Salaces, and 27 Dilles on a Capie Salace minimum	
Biblios	raphy	181
List of	List of Notations	
Index		184