Contents

	Preface to the First Edition	xi
	Preface to the Second Edition	xvii
1.	"Classical" K -Theory	1
2.	The Plus Construction	18
3.	The Classifying Space of a Small Category	31
4.	Exact Categories and Quillen's Q -Construction	38

Statement of the plus and Q erated A -modu $G_i(A[t,t^{-1}])$ for Noetherian reguector bundles rect image and for morphisms G_i and project its; localization Mayer-Vietoris tration by coduced Gersten's conjective sets of points.	of Rings and Schemes the theorem comparing the definitions of K_i of a ring using constructions; definition of $G_i(A)$ as K_i of finitely genules, for Noetherian rings A ; computations of $G_i(A[t])$ or Noetherian A , and hence $K_i(A[t])$, $K_i(A[t,t^{-1}])$ for gular A ; definition of $K_i(X)$, $G_i(X)$ for schemes, using and coherent sheaves, respectively; construction of dinverse image maps for K_i and G_i of Noetherian schemes satisfying appropriate conditions; action of K_0 on K_i , do for formulas; K_i , G_i commute with filtered direct limit for G_i of a closed subscheme and the open complement; of for G_i of affine and projective space bundles; fillimension of support and the BGQ spectral sequence; ecture for power series rings, and semilocal rings of finits on a smooth variety over an infinite field; Bloch's projective bundles, of \mathbf{P}^1 over a noncommutative ring, Brauer schemes.	· · · · · · · · · · · · · · · · · · ·
6. Proofs of the Tl	heorems of Chapter 4	89
Proofs of the fol of Quillen; the	llowing theorems: $\pi_1 BQC$) $\cong K_0(C)$; Theorems A and B theorem on exact sequences of functors; the resolution exists age theorem; the localization theorem.	03
7. Comparison of t	he Plus and Q-Constructions	126
Monoidal categon a small cate space of a localizatorial" version of equivalence S^{-1} act sequences are corollary that the	ories; localization of the action of a monoidal category gory; computation of the homology of the classifying zed category; the $S^{-1}S$ construction, viewed as a "function the plus construction; construction of the homotopy $S \to \Omega BQC$ for any exact category C in which all extensions, where S is the category of isomorphisms in C ; the plus and Q -constructions yield the same K -groups odules over a ring.	120
. The Merkurjev-S	Suslin Theorem	145
The Galois syn Hilbert's Theore torsion in K_2 ; to	nbol; statement of the Merkurjev-Suslin theorem; am 90 for K_2 ; proof of the Merkurjev-Suslin theorem.	- 10
. Localization for S	Singular Varieties	194
of naturality of the Theorem" on K_i localization theorem of finite length and normal surface si	tion theorem for the complement of an effective Cartier i-projective scheme with affine complement; discussion his sequence (after Swan); proof of the "Fundamental of polynomial and Laurent polynomial rings; Levine's rem; computation of K_0 of the category of modules and finite projective dimension over the local ring of a ingularity, in terms of $H^1(K_2)$ of the resolution; com- K_0 for quotient singularities; Chow groups of surfaces	

Appendix A. Results from Topology	230
(A.1) Compactly generated spaces; (A.2)–(A.6) Homotopy groups, Hurewicz theorems; (A.7) Products; (A.8)–(A.12) CW-complexes, Whitehead theorem, Milnor's theorem on the homotopy type of mapping spaces, comparison of singular and cellular homology and cohomology; (A.13)–(A.15) Local coefficients, homology and cohomology with local coefficients for CW-complexes via cellular chains; (A.16) Obstruction theory for maps and homotopies between CW-complexes (which may not be simply connected); (A.17)–(A.22) Fibrations, the homotopy lifting property, long exact homotopy sequence, fiber homotopy equivalence, fibrations over a contractible base are fiber homotopy equivalent to a product, local coefficient systems of the homology and cohomology groups of the fibers of a fibration; (A.23)–(A.26) Leray–Serre spectral sequence for homology and cohomology of a fibration over a CW-complex; (A.27) Homotopy fibers; (A.28) Spectral sequences for the homology and cohomology of a covering space; (A.29)–(A.35) Quasi fibrations (some results of Dold and Thom); (A.36)–(A.42) NDR-pairs and cofibrations (following Steenrod); (A.43)–(A.47) H-spaces; (A.48)–(A.50) Covering spaces of simplicial sets; (A.51)–(A.54) Hurewicz and Whitehead theorems for non-simply connected H-spaces; (A.55) Milnor's theorem on the geometric realization of a product of simplicial sets.	
Appendix B. Results from Category Theory	276
Appendix C. Exact Couples	287
The spectral sequence of an exact couple; bigraded couples; elementary discussion of convergence; the BGQ spectral sequence; the spectral sequence of a filtered complex.	
Appendix D. Results from Algebraic Geometry	295
(D.1)-(D.14) Sheaves; (D.15)-(D.20) Schemes; (D.21)-(D.41) Some properties of schemes; (D.42)-(D.59) Coherent and quasi-coherent sheaves; (D.60)-(D.66) Cohomology and direct images of quasi-coherent and coherent sheaves; (D.67)-(D.70) Some miscellaneous topics.	
Bibliography	339