Contents | Introduction |] | |--|-----| | Chapter I. Classical Algebraic K-functors | 3 | | § 1. The Grothendieck functor K_0 | | | A. Definition, examples and some properties | 3 | | B. $\operatorname{Spec}(R)$ and $\operatorname{H}(R)$ | 12 | | C. Serre's theorem | 18 | | § 2. The Bass-Whitehead functor K_1^B | 29 | | § 3. The Milnor functor K_2^M | 35 | | Chapter II. Higher K -functors | 43 | | § 1. K-theory of Quillen for exact categories | 43 | | § 2. The Quillen plus construction | 72 | | A. Definition and properties | 72 | | B. Computation of $K_*^Q(k)$ for a finite field k | 93 | | \mathcal{C} . Quillen's K -groups for free algebras | 96 | | D. Negative algebraic K-theory | 102 | | E. Finite generation of Quillen's K-groups of the rings of algebraic | | | integers | 108 | | F. Transfer map in the localization theorem | 117 | | § 3. K-Theory of Swan | 127 | | § 4. K-theory of Karoubi-Villamayor | 140 | | § 5. K-theory of Waldhausen | 149 | | Chapter III. Properties of algebraic K-functors | 163 | | § 1. Exactness, excision and the Mayer-Vietoris sequence A. Exactness B. Excision | 163 | |---|-------------------| | C. The Mayer-Vietoris sequence | 170
181 | | § 2. The localization theorem | 184 | | § 3. The fundamental theorem | 197 | | § 4. Products in algebraic K-theory | 222 | | § 5. Stability | 248 | | Chapter IV. Relations between algebraic K-theories | 253 | | \S 1. Isomorphism of Quillen's algebraic K -theories. Agreement plus construction and Q -construction | of
253 | | \S 2. Connection of Quillen's plus construction with Swan's algebra K -theory | ic
270 | | \S 3. Comparison of Swan's and Karoubi-Villamayor's algebraic I theories | √-
278 | | Chapter V. Relation between algebraic and topological K-theorie | s 2 89 | | \S 1. Equivalence of categories of finitely generated projective modules and vector bundles over a compact space for C^* -algebras | d-
289 | | § 2. K-theory of special normed algebras and Z₂-graded C*-algebra A. K-theory of special normed algebras B. K-theory of Z₂-graded C*-algebras | 305
305
328 | | \S 3. Isomorphism of Swan's and Karoubi-Villamayor's K -theories with topological K -theory for real Banach algebras | s
353 | | Chapter VI. The problem of Serre for polynomial and monoid alg | e- | | bras | 361 | | § 1. Proof of Anderson's conjecture | 361 | | A. Normal and seminormal monoidsB. Projective modules over normal monoid rings | 361
368 | | C. On the triviality of the Picard group for monoid algebras over a principal ideal domain | 380 | | § 2. The algebraic proof of Swan | 387 | | Chapter VII. Connection with cyclic homology | 423 | | References | 429 | | Inday | 133 |