Contents

Introduction]
Chapter I. Classical Algebraic K-functors	3
§ 1. The Grothendieck functor K_0	
A. Definition, examples and some properties	3
B. $\operatorname{Spec}(R)$ and $\operatorname{H}(R)$	12
C. Serre's theorem	18
§ 2. The Bass-Whitehead functor K_1^B	29
§ 3. The Milnor functor K_2^M	35
Chapter II. Higher K -functors	43
§ 1. K-theory of Quillen for exact categories	43
§ 2. The Quillen plus construction	72
A. Definition and properties	72
B. Computation of $K_*^Q(k)$ for a finite field k	93
\mathcal{C} . Quillen's K -groups for free algebras	96
D. Negative algebraic K-theory	102
E. Finite generation of Quillen's K-groups of the rings of algebraic	
integers	108
F. Transfer map in the localization theorem	117
§ 3. K-Theory of Swan	127
§ 4. K-theory of Karoubi-Villamayor	140
§ 5. K-theory of Waldhausen	149
Chapter III. Properties of algebraic K-functors	163

§ 1. Exactness, excision and the Mayer-Vietoris sequence A. Exactness B. Excision	163
C. The Mayer-Vietoris sequence	170 181
§ 2. The localization theorem	184
§ 3. The fundamental theorem	197
§ 4. Products in algebraic K-theory	222
§ 5. Stability	248
Chapter IV. Relations between algebraic K-theories	253
\S 1. Isomorphism of Quillen's algebraic K -theories. Agreement plus construction and Q -construction	of 253
\S 2. Connection of Quillen's plus construction with Swan's algebra K -theory	ic 270
\S 3. Comparison of Swan's and Karoubi-Villamayor's algebraic I theories	√- 278
Chapter V. Relation between algebraic and topological K-theorie	s 2 89
\S 1. Equivalence of categories of finitely generated projective modules and vector bundles over a compact space for C^* -algebras	d- 289
 § 2. K-theory of special normed algebras and Z₂-graded C*-algebra A. K-theory of special normed algebras B. K-theory of Z₂-graded C*-algebras 	305 305 328
\S 3. Isomorphism of Swan's and Karoubi-Villamayor's K -theories with topological K -theory for real Banach algebras	s 353
Chapter VI. The problem of Serre for polynomial and monoid alg	e-
bras	361
§ 1. Proof of Anderson's conjecture	361
A. Normal and seminormal monoidsB. Projective modules over normal monoid rings	361 368
C. On the triviality of the Picard group for monoid algebras over a principal ideal domain	380
§ 2. The algebraic proof of Swan	387
Chapter VII. Connection with cyclic homology	423
References	429
Inday	133