Contents

Pı	reface	V
Contents of Volume II		
P	PART A FUNDAMENTAL CONCEPTS	
1	The Basic Framework	3
	1 The concept of a group	3
	2 Groups of coordinate transformations	7
	(a) Rotations	7
	(b) Translations	12
	3 The group of the Schrödinger equation (a) The Hamiltonian operator	13
	(b) The invariance of the Hamiltonian operator	13 14
	(c) The scalar transformation operators P(T)	16
	4 The role of matrix representations	19
2	The Structure of Groups	23
	1 Some elementary considerations	23
	2 Classes	25
	3 Invariant subgroups	27
	4 Cosets	28
	5 Factor groups	31
	6 Homomorphic and isomorphic mappings	33
	7 Direct product groups and semi-direct product groups	37

x CONTENTS

3	Lie Groups	44
	1 Definition of a linear Lie group	44
	2 The connected components of a linear Lie group	52
	3 Compact and non-compact linear Lie groups	56
	4 Invariant integration	58
	5 The homomorphic mapping of SU(2) onto SO(3)	63
	6 The homomorphic mapping of the group SL(2, C) onto the	
	proper orthochronous Lorentz group L ¹	65
	propor orangoment across group ay	
4	Representations of Groups—Principal Ideas	68
	1 Definitions	68
	2 Equivalent representations	71
	3 Unitary representations	73
	4 Reducible and irreducible representations	77
	5 Schur's Lemmas and the orthogonality theorem for matrix	
	representations	80
	6 Characters	83
	7 Methods for finding the irreducible representations of the	
	physically important groups	89
	(a) Finite groups	89
	(b) Lie groups	90
	(-) 3	
5	Representations of Groups—Developments	92
	1 Projection operators	92
	2 Direct product representations	98
	3 The Wigner-Eckert Theorem for groups of coordinate	_
	transformations in \mathbb{R}^3	101
	4 The Wigner–Eckart Theorem generalized	109
	5 Representations of direct product groups	113
	6 Irreducible representations of finite Abelian groups	117
	7 Induced representations	118
	8 The reality of representations	127
6	Group Theory in Quantum Mechanical Calculations	130
	1 The solution of the Schrödinger equation	130
	2 Transition probabilities and selection rules	134
	3 Time-independent perturbation theory	138
	4 Generalization of the theory to incorporate spin-½ particles	142
	(a) The spinor transformation operators	142
	(b) Double groups	147
	(c) The spinor Hamiltonian operator	149
	(d) Spinor basis functions and energy eigenfunctions	151
	(e) Irreducible representations of double groups	153
	(f) Splitting of degeneracies by spin-orbit coupling	156
	5 Time-reversal symmetry	158
	(a) Spin-independent theory	158
	(b) Spin-dependent theory	159

•	PHYSICS	163
7	The Group Theoretical Treatment of Vibrational Problems	165
	1 Introduction	165
	2 General theory of vibrations	166
	(a) Classical theory	166
	(b) Quantum theory	169
	3 Symmetry considerations	170
	(a) Motivation	170
	(b) The invariance group	172
	(c) The displacement representation	175
	(d) Partial diagonalization of the force matrix F	179
	(e) Analysis in terms of basis vectors	183
	(f) Extra degeneracies caused by the reality of F	187
	(g) Symmetry coordinates	189
	(h) Zero-frequency modes of molecules	190
	The Templet and Comment of Commelling Callida	400
×8	The Translational Symmetry of Crystalline Solids	198
	1 The Bravais lattices	198
	2 The cyclic boundary conditions	202
	(a) Electronic wave functions	202
	(b) Lattice vibrations	204
	3 The irreducible representations of the group ${\mathcal T}$ of pure	
	primitive translations and Bloch's Theorem	207
	4 Brillouin zones	209
	5 Electronic energy bands	214
	6 Irreducible representations of the double group \mathcal{T}^{D} of pure	
	primitive translations	217
-	>7 Lattice vibrations	218
_	The Owntella weekin Coase Occurs	222
×9	The Crystallographic Space Groups	222
	1 A survey of the crystallographic space groups	222
	2 Irreducible representations of symmorphic space groups	226
	(a) The fundamental theorem on irreducible representations of	
	symmorphic space groups	226
	(b) The irreducible representations of the cubic space groups	
	O_h^1 , O_h^5 and O_h^9	231
	3 Irreducible representations of non-symmorphic space groups	235
	(a) The fundamental theorem on the irreducible	
	representations of non-symmorphic space groups	235
	(b) The "relevant" irreducible representations of 9(k)	239
	(c) The irreducible representations of the space group O _h of	
	the diamond structure	242
	4 Consequences of the fundamental theorems	245
	(a) Degeneracies of eigenvalues and the symmetry of $\varepsilon(\mathbf{k})$ and	
	$\omega(\mathbf{k})$	245

xii CONTENTS

(b) Continuity and compatibility of the irreducible representations of $\mathcal{G}_0(\mathbf{k})$ and $\mathcal{G}(\mathbf{k})$	248
(c) Origin and orientation dependence of the symmetry	251
labelling of electronic and lattice vibrational states 5 Irreducible representations of double space groups	253
6 Selection rules	255
o Selection rules	200
APPENDICES	259
Appendix A Matrices	261
1 Definitions	261
2 Eigenvalues and eigenvectors	265
Appendix B Vector Spaces	270
1 The concept of a vector space	270
2 Inner product spaces	274
3 Hilbert spaces	278
4 Linear operators 5 Bilinear forms	280 284
6 Linear functionals	286
7 Direct product spaces	288
8 Quaternions	291
Appendix C Proofs of Certain Theorems on Group Representations	294
1 Proofs of Theorems I and IV of Chapter 4, Section 3	294
2 Proof of lemma required for Theorem I of Chapter 4, Section 4	298
3 Proofs of Theorems I and IV of Chapter 4, Section 5	299
4 Proofs of Theorems IV, VII, VIII and IX of Chapter 4, Section 6	302
5 Proof of theorems of Chapter 5, Section 1	307
6 Proof of the Wigner-Eckart Theorem, Theorem II of Chapter 5,	
Section 3	310
7 Proof of Theorem II of Chapter 5, Section 5	311
8 Proofs of the theorems of Chapter 5, Section 7	312 319
9 Proofs of Theorems II, III and IV of Chapter 5, Section 8	313
Appendix D Character Tables of Point Groups	323
1 The single crystallographic point groups	323
2 The double crystallographic point groups	342
3 The linear infinite point groups $D_{\omega h}$ and $C_{\omega h}$	355
References	357
Index	