CONTENTS

Chaj	pter 5.	Algebraic K-theory	1
§ 38.	Grothe	endieck groups	2
	§ 38A.	Grothendieck groups. Frobenius functors	2
•		Grothendieck groups and projective class groups	14
		Regular rings	19
		Localization sequences	31
§ 39.	Grothe	endieck groups of integral group rings	44
	§ 39A.	Localization sequences	45
	§ 39B.	Explicit calculations	54
§ 40.	Whiteh	nead groups	61
	§ 40A.	Introduction	61
		Localization sequences	65
		Elementary matrices	73
	§ 40D.	Unimodular rows and stably free modules	77
§41.	Basic e	lements, stable range, and cancellation	83
§ 42.	. Mayer-Vietoris sequences		
§ 43.	. K-theory of polynomial rings		
§ 44.	Relativ	120	
§ 45.	SK_1 of	orders	138
	§ 45A.	Reduced norms	138
		Maximal orders	142
		Finiteness of SK ₁	151
	•	Profinite groups	156
§ 46.	Whiteh	nead groups of integral group rings	163
§47.	Milnor's K_2 -group		
	§ 47A.	Steinberg groups and K ₂	184
		Relative K-theory	190
	-	Symbols	197
§ 48.	SK_1 of	integral group rings	210
	-	-	v

xii Contents

Chap	oter 6.	Class groups of integral group rings and orders	216
§ 49.	Locally	y free class groups	217
	§ 49A.	Basic formulas	217
	-	Functorial properties and the kernel group	229
		Frobenius functor properties for class groups of group rings	238
§ 50.	Class g	groups of integral group rings	243
	§ 50A.	Cyclic groups of squarefree order	243
	§ 50B.	The kernel group for p-groups	254
	§ 50C.	Metacyclic groups	259
		Dihedral and quaternion 2-groups	266
		An involution on class groups and kernel groups	274
		Cyclic p-groups	283
	§ 50G.	Twisted group rings and crossed-product orders	291
§ 51.	Jacobii	nski's Cancellation Theorem and the Eichler condition	303
		The Eichler condition	304
		The Eichler-Swan Theorem	306
	§ 51C.	Locally free cancellation	322
§ 52.	The H	om description of the class group	329
§ 53.	The Sv	van subgroup of the class group	343
	§ 53A.	The Swan subgroup	343
	§ 53B.	Rings of integers in tame extensions	351
	§ 53C.	Generalized Swan subgroups	353
§ 54.	p-Adic	logarithms and Taylor's Theorem	356
§ 55.	Picard	groups	369
	§ 55A.	Basic properties	369
	§ 55B.	Picard groups of orders	376
	§ 55C.	Locally free Picard groups	382
	§ 55D.	Radical reduction	391
	§ 55E.	Picard groups of group rings	396
Chap	oter 7.	The theory of blocks	406
§ 56.	Introduction to block theory		
	§ 56A.	Background and notation for block theory	407
	§ 56B.	Definition of p-blocks for a finite group G	412
	§ 56C.	A criterion for P.I.M.'s to belong to the same p-block	414
	§ 56D.	Central characters and blocks of KG-modules	416
	856E	The defect of a block	422

		Contents	xiii
§ 57.	The de	fect group of a p-block	429
	§ 57A.	G-algebras, the trace map, and defect groups	429
	§ 57 B .		437
	§ 57C.	Defect groups as Sylow intersections	440
§ 58.	The Br	auer Correspondence	445
	§ 58A.	The Brauer map	445
		Brauer's First Main Theorem	448
	§ 58C.	The Brauer Correspondence	451
§ 59.	Applica	ations of blocks to character theory	462
	§ 59A.	The Nagao Decomposition	463
	§ 59B.	Brauer's Second Main Theorem	467
§ 60.	p-Section	ons and characters in blocks	471
		Block orthogonality and p-sections	471
		Determination of the principal block using block orthogonality	473
	§ 60C.	Applications to the classification of transitive permutation	470
		groups of degree p	478
§61.	Refinen	nents of the Brauer Correspondence	484
	§ 61 A.	.	484
	•	An extension of Brauer's First Main Theorem	489
	901C.	Brauer's Third Main Theorem	494
§ 62.		with cyclic defect groups	495
		Preliminary results from homological algebra	496
		Functorial properties of the Green Correspondence	499
		Uniserial algebras and blocks of finite representation type	504 512
	§ 62 <i>D</i> . § 62 <i>E</i> .	Modular representations in blocks with cyclic defect groups Periodic projective resolutions in blocks with cyclic defect	312
	y 022.	groups	522
§ 63.	Applica	itions to group theory	530
Ü	§ 63A.	· · · · · · · · · · · · · · · · · · ·	530
	§ 63B.	The Brauer-Suzuki Theorem on quaternion Sylow 2-	
	U	subgroups	532
	§ 63C.	Glauberman's Z*-Theorem	545
Chap	oter 8.	The representation theory of finite groups of Lie type	549
§ 64.	Root sy	ystems and finite reflection groups	550
	§ 64A.		550
	§ 64B.	• •	561
	§ 64C.	Parabolic subgroups of finite Coxeter groups	570

xiv Contents

§ 65.	Finite	groups with BN-pairs	576
	§ 65A.	The Bruhat decomposition	576
	§ 65B.	Examples of BN-pairs	580
	§ 65C.	Parabolic subgroups of finite groups with BN-pairs	583
§ 66.	Homol	ogy representations of finite groups with BN-pairs	586
	§ 66A.	Homology representations of finite groups	586
	§ 66B.	The Coxeter poset of a finite g.g.r.	600
	§ 66C.	3 1	
		of a finite group with a BN-pair	605
§ 67.	The He	ecke algebra $\mathcal{H}(G, B)$ and the decomposition of $(1_B)^G$	609
	§ 67A.	The structure of the Hecke algebra $\mathcal{H}(G, B)$	609
	§ 67B.	The sign representation of ${\mathscr H}$ and the Steinberg	
	0.4	representation of G	614
	§ 67C.	Representations of the Hecke algebra \mathcal{H} for a BN-pair of rank 2	619
	§ 67D.	The Feit-Higman Theorem on generalized polygons	623
	§ 67E.		630
\$ 60	Comonia	•	
908.		c algebras and finite Coxeter groups	635
	§ 68A.		635
	§ 68B.	Parametrization of characters in $(1_B)^G$ Generic degrees	643
	yooc.	Generic uegrees	648
§ 69.	Finite g	groups with split BN-pairs	653
	§ 69A.	The Levi Decomposition	653
	§ 69B.	Intersections of parabolic subgroups	662
§ 70.	Cuspida	al characters	666
		Generalized restriction and induction	666
		The philosophy of cusp forms	676
	§ 70C.	Formulas for character values	681
§ 71.	A Dual	ity Operation in ch CG.	688
	§ 71A.	r r r r r r r r r r r r r r r r r r r	689
	§ 71B.	The effects of D_G on character degrees	692
	§ 71C.	The values of the Steinberg character	697
§ 72.	Modula	ar representations of finite groups of Lie type	700
	§ 72A.	The Ballard-Lusztig Theorem on characters of P.I.M.'s	700
	§ 72B.	The simple kG-modules	706
Char	oter 9.	Rationality questions	710
_		, orthogonal, and symplectic CG-modules	719
3.5.	§ 73A.		720
	y /JA.	Rationality questions over the real field R	720

•	٦_	_	٠	-4	~
	'n	m	е	ш	в

xv

	§ 73B.	Induction theorems for real-valued characters	727
§ 74.	The Sc	chur Index	732
Ū	874A.	General theory	732
		Schur indices for group algebras	740
		The Benard-Schacher Theorem	746
§ 75.	Repres	entations and characters of the symmetric group	762
	§ 75A.	Specht modules and simple FS _n -modules	762
	§ 75B.	- "	774
§ 76.	The A	rtin exponent	782
Chaj	pter 10.	Indecomposable modules	790
§ 77.	Repres	entations of graphs and Gabriel's Theorem	790
	-	Representations of graphs and Coxeter functors	790
	§ 77 B .	Representation categories of finite type (Gabriel's Theorem)	799
§ 78.	Auslan	der-Reiten sequences	806
		The Heller loop-space operator	807
		Auslander-Reiten sequences for group algebras	815
	§ 78C.	Auslander-Reiten sequences for algebras	822
§ 79.	Algebra	as of finite representation type	830
Chap	pter 11.	The Burnside ring and the representation ring of a finite	
		group	837
§ 80.	Permu	tation representations and Burnside rings	838
	§ 80A.	Burnside rings	838
		G-sets and induction maps	846
		Tensor induction and algebraic maps	852
	§ 80D.	Conlon's Induction Theorem	859
§81.	Repres	entation rings	868
	§ 81 A.	Preliminary results	869
	§ 81B.	Conlon's Theorems	878
	§81C.	Species	891
	§ 81D.	Dual elements in the Green algebra	898
	§ 81E.	Semisimplicity of representation algebras	906
	§ 81 F.	Nilpotent elements in representation algebras	912
Bibli	ography		921
Nota	Notation index		
Subje	Subject index 9		