TABLE OF CONTENTS | | | | <u>P</u> | age | |---------|-----|------------|---|----------------------| | PREFA | CE | | | iii | | | | THEO! | RY AND ANALYTICAL MECHANICS
t | 1 | | | 1. | Intr | oduction | 1 | | | | | Descriptive vs. Prescriptive Science
Why Control Theory and Mechanics?
Literature | 1
4
6 | | | 2. | Inpu | ts, Outputs and States | 7 | | | | | Some Specific Examples
Inputs, Outputs and States
The Taylor Series in Function Space | 7
14
16 | | | 3. | Lagra | angian and Hamiltonian Control Systems | 23 | | | | 3.2 | Variables Hamiltonian Systems An Aside on Controllability | 23
24
26
33 | | | 4. | Mecha | anical Synthesis | 38 | | | | 4.1
4.2 | Some Examples of Synthesis
The Synthesis Problem | 38
43 | | | Bib | liog | raphy | 46 | | AND O | BSE | ERVAB | TIAL-GEOMETRIC DUALITY BETWEEN CONTROLLABILITY | 49 | | ar i.nu | r K | renei | r and Robert Hermann | | | | 2. | Conti | oduction
rollability and Vector Fields
Observability Pfaffian System | 49
50
53 | Bibliography 63 | | Page | |--|------------| | APPLICATIONS OF ALGEBRAIC GEOMETRY TO SYSTEMS THEORY, PART V: RAMIFICATIONS OF THE MACMILLAN DEGREE | | | Robert Hermann and Clyde Margin | 67 | | Introduction Linear Time-Varying Systems and the Laplace | 67 | | Transform for Scalar Input-Output Systems 3. Feedback for Time-Varying Systems | 70
77 | | 4. The Properties of the Sheaf of all Input-Output Pairs as a Systems-Theoretic Invariant The Solution Cheef of a System Communication | 79 | | 5. The Solution Sheaf of a System Governed by First Order Equations | 83 | | 6. The Macmillan Degree in the Time Domain for Scalar Stationary Input-Output Systems 7. The Macmillan Degree for Weighting Posters of State Sta | 89 | | 7. The Macmillan Degree for Weighting Patterns of
Stationary Vector Input-Output Systems8. A Realization of a Stationary Weighting Pattern | 95 | | in Terms of Solutions of Operator Differential Equations | 104 | | Infinite Dimensional Linear Systems Defined by
Infinite Order Differential Equations A Topological Definition of the Macmillan | 109 | | Degree of the Weighting Pattern in the Time
Domain | 115 | | Bibliography | 120 | | APPLICATIONS OF ALGEBRAIC GEOMETRY TO SYSTEMS THEORY, PART VI: INFINITE DIMENSIONAL LINEAR SYSTEMS AND PROPERTIES OF ANALYTIC FUNCTIONS | | | Clyde Martin and Robert Hermann | 121 | | Introduction The Realization of Rational Functions as | 121 | | Transfer Functions in Terms of the Theory of Riemann Surfaces | 124 | | 3. Analytic Functions Defined by Cauchy Integral
Formulas4. Generalized Cauchy Integral Formulas | 132
139 | | A New Form of the Transfer Function for
Infinite Dimensional Linear Systems | 141 | | Transfer Functions Defined by Ordinary Differential Operators | 144 | | Bibliography | 155 | | | | 203 229 230 275 νi | | Page | |--|------------| | OUCTION TO CATASTROPHE THEORY | 157 | | | | | Introduction
The Main Mathematical Ideas | 157
159 | | liography | 202 | | | | | OF THE PROCEEDINGSSEMINAR/INSTITUTE ON TALL AND ALGEBRAIC GEOMETRY FOR CONTROL | | ## AN INTROI Hector J. 1. 2. 7 Bib1 A SUMMARY DIFFERENT **ENGINEERS** Peter Crouch Purpose and Approach Summary of Proceedings | Ing
Ma
Apg
Re | near Systems put Output Descriptions instream Concepts plications search Needs nclusion | |------------------------|---| | THE MODU
Christop | ULI SPACE FOR LINEAR DYNAMICAL SYSTEMS pher I. Byrnes | | 1. | The Problem | | _ | The Space of Transfer Functions | | | The Affine Invariant Theory for Dynamical | | | Systems | | 4. | The Geometric Invariant Theory of Dynamical | | | Systems | | 5 | Applications of Coometric Investigat Theory to | ## T | 2. The space of fransier runctions | 233 | |--|-----| | 3. The Affine Invariant Theory for Dynamical | | | Systems | 239 | | 4. The Geometric Invariant Theory of Dynamical | | | Systems | 243 | | 5. Applications of Geometric Invariant Theory to | | | Linear Dynamical Systems | 255 | | 6. The Algebraic Topology of the Moduli Space and | | | its Relation to Canonical Forms | 259 | | | 275 | | Bibliography | 2/3 | | | | | DEDDECENTATIONS OF OUTURES AND MODILE OF LINEAR | | | REPRESENTATIONS OF QUIVERS AND MODULI OF LINEAR
DYNAMICAL SYSTEMS | | | PINAMICAL SYSTEMS | | | | ٥. | Thh. | | |-------|------|---------------|---------| | | | Lin | ear | | | 6. | The | A19 | | | | its | Re | | | Bib | lio | grap | | REPRE | SEN | IT ል ጥ | T O N S | | DYNAM | ITCA | I. S | YSTI | | Michi | | | | 277 Michiel Hazewinkel 1. Preface 277 278 2. Quivers and their Representations | | Page | |--|---------------------------------| | 3. Gabriel's Theorem and its Relatives | 281 | | On the Quivers of (Algebraic) Linear System
Theory | 284 | | Bibliography | 287 | | MODULI AND CANONICAL FORMS FOR LINEAR DYNAMICAL SYSTEMS, III: THE ALGEBRAIC-GEOMETRIC CASE Michiel Hazewinkel | 291 | | Introduction The Quotient Variety Mn,m,p The Fine Moduli Variety Mn,m,p Existence and Nonexistence of Algebraic | 291
297
318 | | Continuous Canonical Forms | 322 | | Bibliography | 335 | | MULTILINEAR OPTIMAL CONTROL John Baillieul | 337 | | Introduction Multilinear Differential Equations Optimal Control Theory for Multilinear Systems Complete Solutions for the Case p = 1, q = 0 Conclusion | 337
338
344
350
358 | | Bibliography | 358 | | TRANSVERSELY COMPLETE e-FOLIATIONS OF CODIMENSION ONE AND ACCESSIBILITY PROPERTIES OF NON-LINEAR SYSTEMS William M. Boothby | 361 | | 1. Introduction 2. Foliations of Manifolds 3. An Application of Foliation Theory 4. Final Comments Bibliography | 361
365
372
381
384 | | FINITE VOLTERRA SERIES Peter Crouch | 387 | | Realizability Structural Equations | 392
394 | | CONTENTS | ix | |--|------------| | | Page | | 3. The Lie Algebra and State Space 4. Conclusion | 399
403 | | Bibliography | 403 | | FOURIER-BOREL DUALITY AND BILINEAR REALIZATIONS OF CONTROL SYSTEMS | | | Thomas A.W. Dwyer, III | 405 | | Bilinearization of Linear-Analytic Systems Fourier-Borel Duality and Hyperdifferential
Operators in Banach Spaces | 407
413 | | The Ovcyannikov-Trèves Theorem and Bilinear
Systems in Scales of Banach Spaces | 420 | | Volterra Series for Linear-Analytic Systems in
Banach Spaces Cauchy Integral Formulas for the Volterra | 424 | | Kernels 6. Linear-Analytic Systems in Scales of Banach | 427 | | Spaces 7. Weighted Analytic Bilinearizations and Inverse | 428 | | Problems 8. Dual Pairs of Linear-Analytic Systems: Controllability and Observability | 429
430 | | Bibliography | 433 | | ACCESSIBILITY PROPERTIES OF SMOOTH NONLINEAR CONTROL | | | SYSTEMS N. Kalouptsidis and D.L. Elliott | 439 | | 1. Introduction | 439 | | 2. C^{∞} Symmetric Systems
3. Controllable Systems | 444
445 | | Bibliography | 446 | | A NON-COMMUTATIVE SYMBOLIC CALCULUS FOR NON-LINEAR | | | FUNCTIONALS AND AUTOMATIC CONTROL SYSTEMS Michel Fliess | 447 | | 1. Notation | 447
447 | | Rational Non-Commutative Formal Power Series Regular (or Bilinear) Systems | 447 | | Relation to Volterra Series Approximation
Results | 450 | | | Page | |---|---------------------------------| | An Example of Symbolic Calculus: Forced Non-
Linear Equations | 451 | | Bibliography | 454 | | PIECEWISE ANALYSIS OF LARGE LINEAR SYSTEMS: KRON'S METHOD AND SPARSE MATRIX PROCEDURES | | | B. Kent Harrison | 455 | | Introduction Network Topology Electrical Network Equations Tearing and Interconnection Sparse Matrix Procedures | 455
456
459
462
469 | | Appendix | 475 | | Bibliography | 480 | | NORMAL FORMS FOR REAL LINEAR HAMILTONIAN SYSTEMS N. Burgoyne and R. Cushman | 483 | | Real Linear Hamiltonian Differential Equations Basic Symplectic Linear Algebra Statement of Results Proofs of the Propositions An Algorithm for Finding the Normal Form | 484
487
492
497
526 | | Appendix | 527 | | Bibliography | 528 | | MODELING AND ANALYSIS OF LINEAR SYSTEMS WITH MULTIPLICATIVE POISSON WHITE NOISE Steven I. Marcus | 531 | | Introduction The Poisson-Driven Canonical Extension Moment Equations and Stochastic Stability | 531
535
549 | | Bibliography | 553 |