Contents

	ACKNOWLEDGMENTS	XIII XVII
Снарте	R I. SCOPE OF THE THEORY	
§1.	The Classical Groups	3
§2.	•	7
§3.	Representations	10
§4.	Concrete Problems in Representation Theory	14
§ 5.	Abstract Theory for Compact Groups	14
§6.	Application of the Abstract Theory to Lie Groups	23
§7.	Problems	24
	R II. REPRESENTATIONS OF SU(2), SL(2, \mathbb{R}), AND 2, \mathbb{C})	
§ 1.	The Unitary Trick	28
§2.	Irreducible Finite-Dimensional Complex-Linear	20
Ü	Representations of $\mathfrak{sl}(2,\mathbb{C})$	30
§3.	Finite-Dimensional Representations of $\mathfrak{sl}(2,\mathbb{C})$	31
§4.	Irreducible Unitary Representations of SL(2, C)	33
§5.	Irreducible Unitary Representations of SL(2, R)	35
§6.		39
§7.	Plancherel Formula	41
§8.	Problems	42
	R III. C^{∞} Vectors and the Universal veloping Algebra	
§1.	Universal Enveloping Algebra	46
§2.	. • •	50
§3.		51
§4.		55
§5.	Problems	57

viii *CONTENTS*

Снарте	R IV. REPRESENTATIONS OF COMPACT LIE GROUPS	
§ 1.	Examples of Root Space Decompositions	60
§2.	Roots	65
§3.	Abstract Root Systems and Positivity	72
§4.	Weyl Group, Algebraically	78
§5.	Weights and Integral Forms	81
§6.	Centalizers of Tori	86
§7.	Theorem of the Highest Weight	89
§8.	Verma Modules	93
§9.	Weyl Group, Analytically	100
§10.	Weyl Character Formula	104
§11.	Problems	109
Снарте	R V. STRUCTURE THEORY FOR NONCOMPACT GROUPS	
§1.	Cartan Decomposition and the Unitary Trick	113
§2.	Iwasawa Decomposition	116
§3.	Regular Elements, Weyl Chambers, and the Weyl	
	Group	121
§4 .	Other Decompositions	126
§5.	Parabolic Subgroups	132
§6 .	Integral Formulas	137
§7.	Borel-Weil Theorem	142
§8.	Problems	147
Снарте	R VI. HOLOMORPHIC DISCRETE SERIES	
§1.	Holomorphic Discrete Series for SU(1, 1)	150
§2.	Classical Bounded Symmetric Domains	152
§3 .	Harish-Chandra Decomposition	153
§4.	Holomorphic Discrete Series	158
§ 5.	Finiteness of an Integral	161
§6 .	Problems	164
Снарте	R VII. INDUCED REPRESENTATIONS	
§ 1.	Three Pictures	167
§2.	Elementary Properties	169
§3.	Bruhat Theory	172
§4.	Formal Intertwining Operators	174
§5 .	Gindikin-Karpelevič Formula	177
§6.	Estimates on Intertwining Operators, Part I	181
§7.	Analytic Continuation of Intertwining Operators,	
	Part I	183
§8.	Spherical Functions	185
§9 .	Finite-Dimensional Representations and the H	
	function	191

CONTENTS	1.0

§10.	Estimates on Intertwining Operators, Part II	196
§11.	Tempered Representations and Langlands Quotients	198
§12.	Problems	201
CHAPTER	VIII. Admissible Representations	
§1.	Motivation	203
§2.	Admissible Representations	205
§3.	Invariant Subspaces	209
§4.	Framework for Studying Matrix Coefficients	215
§5.	Harish-Chandra Homomorphism	218
§6.	Infinitesimal Character	223
§7.	Differential Equations Satisfied by Matrix Coefficients	226
§8.	Asymptotic Expansions and Leading Exponents	234
§9.	First Application: Subrepresentation Theorem	238
§10.	Second Application: Analytic Continuation of Interwining	
Ū	Operators, Part II	239
§11.	Third Application: Control of K-Finite $Z(g^{\mathbb{C}})$ -Finite	
U	Functions	242
§12.	Asymptotic Expansions near the Walls	247
§13.	Fourth Application: Asymptotic Size of Matrix Coefficients	253
§14.	Fifth Application: Identification of Irreducible Tempered	
3	Representations	258
§15.	Sixth Application: Langlands Classification of Irreducible	
3-41	Admissible Representations	266
§16.	Problems	276
CHAPTER	IX. CONSTRUCTION OF DISCRETE SERIES	
§ 1.	Infinitesimally Unitary Representations	281
§2.	A Third Way of Treating Admissible Representations	282
§3.	Equivalent Definitions of Discrete Series	284
§4.	Motivation in General and the Construction in SU(1, 1)	287
§5.	Finite-Dimensional Spherical Representations	300
§6.	Duality in the General Case	303
§7.	Construction of Discrete Series	309
§8.	Limitations on K Types	320
§9.	Lemma on Linear Independence	328
•	Problems	330
Снартев	X. GLOBAL CHARACTERS	
§ 1.	Existence	333
§2.	Character Formulas for $SL(2, \mathbb{R})$	338
§3.	Induced Characters	347
§ 4 .	Differential Equations	354
	Analyticity on the Regular Set, Overview and Example	355

CONTENTS

§6.	Analyticity on the Regular Set, General Case	360
§7.	Formula on the Regular Set	368
§8.	Behavior on the Singular Set	37
§ 9.	Families of Admissible Representations	374
§10.	Problems	383
Снартен	XI. INTRODUCTION TO PLANCHEREL FORMULA	
§1 .	Constructive Proof for SU(2)	38:
§2.	Constructive Proof for $SL(2, \mathbb{C})$	38′
§3 .	Constructive Proof for $SL(2, \mathbb{R})$	394
§4.	Ingredients of Proof for General Case	40
§5.	Scheme of Proof for General Case	404
§6.	Properties of F_f	40′
§7.	Hirai's Patching Conditions	42
§8.	Problems	42:
Снарты	XII. EXHAUSTION OF DISCRETE SERIES	
§1 .	Boundedness of Numerators of Characters	426
§2.	Use of Patching Conditions	432
§3.	Formula for Discrete Series Characters	436
§4.	Schwartz Space	447
§5.	Exhaustion of Discrete Series	452
§6.	Tempered Distributions	456
§7.	Limits of Discrete Series	460
§8.	Discrete Series of M	467
§9.	Schmid's Identity	473
§10.	Problems	476
Снартев	XIII. PLANCHEREL FORMULA	
§1.	Ideas and Ingredients	482
§2.	Real-Rank-One Groups, Part I	482
§3.	Real-Rank-One Groups, Part II	485
	Averaged Discrete Series	494
§5.		502
§6.	General Case	511
§7.	Problems	512
CHAPTER	XIV. IRREDUCIBLE TEMPERED REPRESENTATIONS	
§ 1.	SL(2, ℝ) from a More General Point of View	513
§2.	Eisenstein Integrals	520
§3.	Asymptotics of Eisenstein Integrals	520
§4.	The η Functions for Intertwining Operators	533
§5.	First Irreducibility Results	540
§6.	Normalization of Intertwining Operators and Reducibility	543
87	Connection with Plancherel Formula when dim 4 - 1	54'

xi
)

§8.	Harish-Chandra's Completeness Theorem	553
§9.	R Group	560
§10.	Action by Weyl Group on Representations of M	568
§11.	Multiplicity One Theorem	577
§12.		584
§13.	Generalized Schmid Identities	587
§14.		595
§15.	Complete Reduction of Induced Representations	599
§16.		606
§17.	Revised Langlands Classification	614
§18.	Problems	621
Снартек	XV. MINIMAL K TYPES	
§1 .	Definition and Formula	626
§2.		635
	Connection with Intertwining Operators	641
§4.		647
CHAPTER	XVI. UNITARY REPRESENTATIONS	
§ 1.	$SL(2,\mathbb{R})$ and $SL(2,\mathbb{C})$	650
§2.		653
V	Criterion for Unitary Representations	655
§4.	* •	660
v	Problems	665
APPENDI	x A: Elementary Theory of Lie Groups	
81	I is Algebras	667
§1. §2.		668
§2. §3.		670
§3. §4.	1 0 1	673
§5.	1 0 1	674
§6.		679
A DDENIDI	x B: Regular Singular Points of Partial	
	FERENTIAL EQUATIONS	
§1.	Summary of Classical One-Variable Theory	685
§2.	Uniqueness and Analytic Continuation of Solutions	
-	in Several Variables	690
§3.	Analog of Fundamental Matrix	693
§4.	Regular Singularities	697
§ 5.	Systems of Higher Order	700
§6.	Leading Exponents and the Analog of the Indicial	
	Equation	703
§7.	Uniqueness of Representation	710

xii CONTENTS

APPENDIX C:	ROOTS	AND	RESTRICTED	Roots	FOR	CLASSICA	١L
GROUPS							

§1.	Complex Groups	713		
§2.	Noncompact Real Groups	713		
§3.	oots vs. Restricted Roots in Noncompact Real Groups			
Nor	res	719		
REF	ERENCES	747		
Ind	ex of Notation	763		
Ind	EX	767		